Frequency isolation problem for hyperbolic QEP

Suzana Miodragović

University J. J. Strossmayer of Osijek Department of Mathematics
Trg Ljudevita Gaja 6
31000 Osijek, Croatia
http://www.mathos.unios.hr
ssusic@mathos.hr

Joint work with:
J. Moro, F. de Teran, N. Truhar

Summary

- Hyperbolic quadratic eigenvalue problem
- Frequency isolation algorithms
- Basic isolation algorithm
- Continuation algorithm
- Numerical examples

Summary

- Hyperbolic quadratic eigenvalue problem
- Frequency isolation algorithms
- Basic isolation algorithm
- Continuation algorithm
- Numerical examples

Motivated by: J.Moro and J.Egaña, Directional algorithms for the frequency isolation problem in undamped vibrational systems, Mechanical Systems and Signal Processing, 2016.

Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem (HQEP)

$$
\left(\lambda^{2} M+\lambda D+K\right) x=0
$$

Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem (HQEP)

$$
\left(\lambda^{2} M+\lambda D+K\right) x=0
$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, $M>0$ and

Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem (HQEP)

$$
\left(\lambda^{2} M+\lambda D+K\right) x=0
$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, $M>0$ and

$$
\left(x^{T} D x\right)^{2}>4\left(x^{T} M x\right)\left(x^{T} K x\right), \quad \forall 0 \neq x \in \mathbb{C}^{n}
$$

Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem (HQEP)

$$
\left(\lambda^{2} M+\lambda D+K\right) x=0
$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, $M>0$ and

$$
\left(x^{T} D x\right)^{2}>4\left(x^{T} M x\right)\left(x^{T} K x\right), \quad \forall 0 \neq x \in \mathbb{C}^{n}
$$

Nice properties of the hyperbolic QEPs:

Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem (HQEP)

$$
\left(\lambda^{2} M+\lambda D+K\right) x=0
$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, $M>0$ and

$$
\left(x^{T} D x\right)^{2}>4\left(x^{T} M x\right)\left(x^{T} K x\right), \quad \forall 0 \neq x \in \mathbb{C}^{n}
$$

Nice properties of the hyperbolic QEPs:

- $2 n$ real and semisimple eigenvalues

Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem (HQEP)

$$
\left(\lambda^{2} M+\lambda D+K\right) x=0,
$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, $M>0$ and

$$
\left(x^{T} D x\right)^{2}>4\left(x^{T} M x\right)\left(x^{T} K x\right), \quad \forall 0 \neq x \in \mathbb{C}^{n}
$$

Nice properties of the hyperbolic QEPs:

- $2 n$ real and semisimple eigenvalues
- eigenvalues can be obtained by bisection

Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem (HQEP)

$$
\left(\lambda^{2} M+\lambda D+K\right) x=0
$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, $M>0$ and

$$
\left(x^{T} D x\right)^{2}>4\left(x^{T} M x\right)\left(x^{T} K x\right), \quad \forall 0 \neq x \in \mathbb{C}^{n}
$$

Nice properties of the hyperbolic QEPs:

- $2 n$ real and semisimple eigenvalues
- eigenvalues can be obtained by bisection

Problem

When the eigenvalues of the QEP are in certain region, vibration system experiences dangerous vibrations (resonance) and M, D and K should be chosen in such way that this spectral regions are avoided.

Problem

Problem

QUESTION!

Problem

QUESTION! How to avoid resonance?

Problem

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!

Problem

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!
More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$
\mathcal{R}=(c-\rho, c+\rho)
$$

where c is the dangerous frequency or any other quantity that should be kept away from the spectrum.

Problem

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!
More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$
\mathcal{R}=(c-\rho, c+\rho)
$$

where c is the dangerous frequency or any other quantity that should be kept away from the spectrum.

Problem

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!
More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$
\mathcal{R}=(c-\rho, c+\rho)
$$

where c is the dangerous frequency or any other quantity that should be kept away from the spectrum.

Problem

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!
More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$
\mathcal{R}=(c-\rho, c+\rho)
$$

where c is the dangerous frequency or any other quantity that should be kept away from the spectrum.

Spectrum is isolated!

Problem

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!
More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$
\mathcal{R}=(c-\rho, c+\rho)
$$

where c is the dangerous frequency or any other quantity that should be kept away from the spectrum.

Frequency isolation problem

Given resonance band $\mathcal{R}=(c-\rho, c+\rho)$ and vibrational system (M, D, K) with some eigenvalue in $(c-\rho, c+\rho)$, modify system in such way that the new system $(M+\Delta M, D+\Delta D, K+\Delta K)$

Problem

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!
More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$
\mathcal{R}=(c-\rho, c+\rho)
$$

where c is the dangerous frequency or any other quantity that should be kept away from the spectrum.

Frequency isolation problem

Given resonance band $\mathcal{R}=(c-\rho, c+\rho)$ and vibrational system (M, D, K) with some eigenvalue in $(c-\rho, c+\rho)$, modify system in such way that the new system $(M+\Delta M, D+\Delta D, K+\Delta K)$

- has no eigenvalue in the resonance band and

Problem

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!
More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$
\mathcal{R}=(c-\rho, c+\rho)
$$

where c is the dangerous frequency or any other quantity that should be kept away from the spectrum.

Frequency isolation problem

Given resonance band $\mathcal{R}=(c-\rho, c+\rho)$ and vibrational system (M, D, K) with some eigenvalue in $(c-\rho, c+\rho)$, modify system in such way that the new system $(M+\Delta M, D+\Delta D, K+\Delta K)$

- has no eigenvalue in the resonance band and
- is close (in some sense) to original system (M, D, K)

Preservation of hyperbolicity

Preservation of hyperbolicity

Theorem (F.Tisseur, N.J.Higham, P. Van Doren '02)
A system $\lambda^{2} M+\lambda D+K$ with M Hermitian positive definite and D and K Hermitian is hyperbolic if the following inequality holds:

$$
\sigma_{\min }(D)^{2}>4 \lambda_{\max }(M) \lambda_{\max }(K)
$$

Preservation of hyperbolicity

Theorem (F.Tisseur, N.J.Higham, P. Van Doren '02)
A system $\lambda^{2} M+\lambda D+K$ with M Hermitian positive definite and D and K Hermitian is hyperbolic if the following inequality holds:

$$
\sigma_{\min }(D)^{2}>4 \lambda_{\max }(M) \lambda_{\max }(K)
$$

Corollary

Let $\lambda^{2} M+\lambda D+K$ be hyperbolic and ΔD a Hermitian perturbation of the damping matrix, D, such that

$$
\|\Delta D\|_{2}<\sigma_{\min }(D)-2 \sqrt{\lambda_{\max }(M) \lambda_{\max }(K)}
$$

Then the perturbed system $\lambda^{2} M+\lambda(D+\Delta D)+K$ is hyperbolic.

The basic isolation algorithm

The basic isolation algorithm

Consider: hyperbolic QEP,

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - initial (unperturbed) system:

$$
Q\left(s_{0}\right)=\lambda^{2} M+\lambda D+K
$$

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - initial (unperturbed) system:

$$
Q\left(s_{0}\right)=\lambda^{2} M+\lambda \mathbf{D}+K
$$

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$
Q(\mathbf{s})=\lambda^{2} M+\lambda \mathbf{D}_{\mathbf{s}}+K
$$

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$
Q(\mathbf{s})=\lambda^{2} M+\lambda \mathbf{D}_{\mathbf{s}}+K
$$

D_{s} is an $n \times n$ matrix depending on the parameters $s_{k}, k=1, \ldots, 2 n-1$, if $s=s_{0}$ then $D_{s}=D$.

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$
Q(\mathbf{s})=\lambda^{2} M+\lambda \mathbf{D}_{\mathbf{s}}+K
$$

D_{s} is an $n \times n$ matrix depending on the parameters $s_{k}, k=1, \ldots, 2 n-1$, if $s=s_{0}$ then $D_{s}=D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$
Q(\mathbf{s})=\lambda^{2} M+\lambda \mathbf{D}_{\mathbf{s}}+K
$$

D_{s} is an $n \times n$ matrix depending on the parameters $s_{k}, k=1, \ldots, 2 n-1$, if $s=s_{0}$ then $D_{s}=D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

- variation of "inside" eigenvalues is maximal, and

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$
Q(\mathbf{s})=\lambda^{2} M+\lambda \mathbf{D}_{\mathbf{s}}+K
$$

D_{s} is an $n \times n$ matrix depending on the parameters $s_{k}, k=1, \ldots, 2 n-1$, if $s=s_{0}$ then $D_{s}=D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

- variation of "inside" eigenvalues is maximal, and
- variation of "outside" eigenvalues is minimal.

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$
Q(\mathbf{s})=\lambda^{2} M+\lambda \mathbf{D}_{\mathbf{s}}+K
$$

D_{s} is an $n \times n$ matrix depending on the parameters $s_{k}, k=1, \ldots, 2 n-1$, if $s=s_{0}$ then $D_{s}=D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

- variation of "inside" eigenvalues is maximal, and
- variation of "outside" eigenvalues is minimal.

Then, modify (M, D, K) along this direction up to isolation.

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$
Q(\mathbf{s})=\lambda^{2} M+\lambda \mathbf{D}_{\mathbf{s}}+K
$$

D_{s} is an $n \times n$ matrix depending on the parameters $s_{k}, k=1, \ldots, 2 n-1$, if $s=s_{0}$ then $D_{s}=D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

- variation of "inside" eigenvalues is maximal, and
- variation of "outside" eigenvalues is minimal.

Then, modify (M, D, K) along this direction up to isolation.
λ_{j} is considered as the function of data $s=\left(s_{1}, s_{2}, \ldots, s_{2 n-1}\right) \in \mathbb{R}^{2 n-1}$

The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$
Q(\mathbf{s})=\lambda^{2} M+\lambda \mathbf{D}_{\mathbf{s}}+K
$$

D_{s} is an $n \times n$ matrix depending on the parameters $s_{k}, k=1, \ldots, 2 n-1$, if $s=s_{0}$ then $D_{s}=D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

- variation of "inside" eigenvalues is maximal, and
- variation of "outside" eigenvalues is minimal.

Then, modify (M, D, K) along this direction up to isolation.
λ_{j} is considered as the function of data $s=\left(s_{1}, s_{2}, \ldots, s_{2 n-1}\right) \in \mathbb{R}^{2 n-1}$
Work in parametar space $\mathbb{R}^{2 n-1}$ instead in matrix space $\mathbb{R}^{n \times n}$!

The basic isolation algorithm

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s_{0}, gives

$$
\lambda_{j}(s)=\lambda_{j}\left(s_{0}\right)+\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle+\cdots, \text { where } \delta s=s-s_{0}
$$

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s_{0}, gives

$$
\lambda_{j}(s)=\lambda_{j}\left(s_{0}\right)+\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle+\cdots, \text { where } \delta s=s-s_{0}
$$

First order term $\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle$ should be:

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s_{0}, gives

$$
\lambda_{j}(s)=\lambda_{j}\left(s_{0}\right)+\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle+\cdots, \text { where } \delta s=s-s_{0}
$$

First order term $\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle$ should be:

1. as large as possible for $\lambda_{j}, j \in I_{i n}$

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s_{0}, gives

$$
\lambda_{j}(s)=\lambda_{j}\left(s_{0}\right)+\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle+\cdots, \text { where } \delta s=s-s_{0}
$$

First order term $\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle$ should be:

1. as large as possible for $\lambda_{j}, j \in I_{i n}$
2. as small as possible for $\lambda_{j}, j \in I_{\text {out }}$

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s_{0}, gives

$$
\lambda_{j}(s)=\lambda_{j}\left(s_{0}\right)+\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle+\cdots, \text { where } \delta s=s-s_{0}
$$

First order term $\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle$ should be:

1. as large as possible for $\lambda_{j}, j \in I_{i n}$
2. as small as possible for $\lambda_{j}, j \in I_{\text {out }}$

Since

$$
\delta s \perp \nabla \lambda_{j}\left(s_{0}\right) \text { for all } j \in I_{\text {out }}
$$

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s_{0}, gives

$$
\lambda_{j}(s)=\lambda_{j}\left(s_{0}\right)+\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle+\cdots, \text { where } \delta s=s-s_{0}
$$

First order term $\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle$ should be:

1. as large as possible for $\lambda_{j}, j \in I_{i n}$
2. as small as possible for $\lambda_{j}, j \in I_{\text {out }}$

Since

$$
\delta s \perp \nabla \lambda_{j}\left(s_{0}\right) \text { for all } j \in I_{o u t}
$$

denote

$$
W^{\perp}=\left\{w \in \mathbb{R}^{2 n-1}:\left\langle\nabla \lambda_{j}\left(s_{0}\right), w\right\rangle=0, j \in I_{\text {out }}\right\}
$$

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s_{0}, gives

$$
\lambda_{j}(s)=\lambda_{j}\left(s_{0}\right)+\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle+\cdots, \text { where } \delta s=s-s_{0}
$$

First order term $\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle$ should be:

1. as large as possible for $\lambda_{j}, j \in I_{i n}$
2. as small as possible for $\lambda_{j}, j \in I_{\text {out }}$

Since

$$
\delta s \perp \nabla \lambda_{j}\left(s_{0}\right) \text { for all } j \in I_{o u t}
$$

denote

$$
W^{\perp}=\left\{w \in \mathbb{R}^{2 n-1}:\left\langle\nabla \lambda_{j}\left(s_{0}\right), w\right\rangle=0, j \in I_{\text {out }}\right\}
$$

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s_{0}, gives

$$
\lambda_{j}(s)=\lambda_{j}\left(s_{0}\right)+\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle+\cdots, \text { where } \delta s=s-s_{0}
$$

First order term $\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle$ should be:

1. as large as possible for $\lambda_{j}, j \in I_{\text {in }}$
2. as small as possible for $\lambda_{j}, j \in I_{\text {out }}$

Two stages of the isolation process:

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s_{0}, gives

$$
\lambda_{j}(s)=\lambda_{j}\left(s_{0}\right)+\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle+\cdots, \text { where } \delta s=s-s_{0}
$$

First order term $\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle$ should be:

1. as large as possible for $\lambda_{j}, j \in I_{\text {in }}$
2. as small as possible for $\lambda_{j}, j \in I_{\text {out }}$

Two stages of the isolation process:

1. Choice of direction: Determine unit vector $w_{\max } \in W^{\perp}$ such that

$$
\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle, j \in I_{i n}
$$

are maximal, in some sence.

The basic isolation algorithm

Denote by $I_{\text {in }}$ and $I_{\text {out }}$ the subsets of $\{1, \ldots, 2 n\}$, set of indices of the eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s_{0}, gives

$$
\lambda_{j}(s)=\lambda_{j}\left(s_{0}\right)+\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle+\cdots, \text { where } \delta s=s-s_{0}
$$

First order term $\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle$ should be:

1. as large as possible for $\lambda_{j}, j \in I_{\text {in }}$
2. as small as possible for $\lambda_{j}, j \in I_{\text {out }}$

Two stages of the isolation process:

1. Choice of direction: Determine unit vector $w_{\max } \in W^{\perp}$ such that

$$
\left\langle\nabla \lambda_{j}\left(s_{0}\right), \delta s\right\rangle, j \in I_{i n}
$$

are maximal, in some sence.
2. Isolation: Given $w_{\max }$ from Stage 1., find smallest $\alpha^{*} \in \mathbb{R}$ such that eigenvalues correspond to $s=s_{0}+\alpha^{*} w_{\max }$ are outside the \mathcal{R}.

The basic isolation algorithm - choice of direction

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{\max } \in W^{\perp}$.

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{\max } \in W^{\perp}$.

Compute:

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{\max } \in W^{\perp}$.

Compute:

- Directional derivatives of all eigenvalues

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{\max } \in W^{\perp}$.

Compute:

- Directional derivatives of all eigenvalues \longrightarrow

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{\max } \in W^{\perp}$.

Compute:

- Directional derivatives of all eigenvalues \longrightarrow requires all eigenvectors of initial QEP. Sometimes we don't have to do it for all eigenvalues!

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{\max } \in W^{\perp}$.

Compute:

- Directional derivatives of all eigenvalues \longrightarrow requires all eigenvectors of initial QEP. Sometimes we don't have to do it for all eigenvalues!

EXPLAIN later!

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{\max } \in W^{\perp}$.

Compute:

- Directional derivatives of all eigenvalues \longrightarrow requires all eigenvectors of initial QEP. Sometimes we don't have to do it for all eigenvalues!

EXPLAIN later!

- Orthonormal basis of W^{\perp} (e.g. via QR factorization)

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{\max } \in W^{\perp}$.

Compute:

- Directional derivatives of all eigenvalues \longrightarrow requires all eigenvectors of initial QEP. Sometimes we don't have to do it for all eigenvalues!

EXPLAIN later!

- Orthonormal basis of W^{\perp} (e.g. via QR factorization)
- $w_{\max }$ is singular vector that correspond to $\sigma_{\max }$ of scalar product matrix, that is $\Pi \in \mathbb{R}^{q \times q}$ with

$$
\pi_{j, t}=\left\langle\nabla \lambda_{j}\left(s_{0}\right), w_{t}\right\rangle
$$

in the position $(j, t), j, t=1, \ldots, q$.

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{\max } \in W^{\perp}$.

Compute:

- Directional derivatives of all eigenvalues \longrightarrow requires all eigenvectors of initial QEP. Sometimes we don't have to do it for all eigenvalues!

EXPLAIN later!

- Orthonormal basis of W^{\perp} (e.g. via QR factorization)
- $w_{\max }$ is singular vector that correspond to $\sigma_{\max }$ of scalar product matrix, that is $\Pi \in \mathbb{R}^{q \times q}$ with

$$
\pi_{j, t}=\left\langle\nabla \lambda_{j}\left(s_{0}\right), w_{t}\right\rangle
$$

in the position $(j, t), j, t=1, \ldots, q$.

$$
\text { OVERALL COST: } O\left(n^{3}\right)
$$

The basic isolation algorithm - isolation

The basic isolation algorithm - isolation

Stage 2.

Given optimal direction $w_{\max } \in W^{\perp}$, find smallest $\alpha^{*} \in \mathbb{R}$ such that for $s=s_{0}+\alpha^{*} w_{\max }$ eigenvalue is outside the resonance band.

The basic isolation algorithm - isolation

Stage 2.

Given optimal direction $w_{\max } \in W^{\perp}$, find smallest $\alpha^{*} \in \mathbb{R}$ such that for $s=s_{0}+\alpha^{*} w_{\max }$ eigenvalue is outside the resonance band.

QEP is hyperbolic

The basic isolation algorithm - isolation

Stage 2.

Given optimal direction $w_{\max } \in W^{\perp}$, find smallest $\alpha^{*} \in \mathbb{R}$ such that for $s=s_{0}+\alpha^{*} w_{\max }$ eigenvalue is outside the resonance band.

QEP is hyperbolic \longrightarrow

The basic isolation algorithm - isolation

Stage 2.

Given optimal direction $w_{\max } \in W^{\perp}$, find smallest $\alpha^{*} \in \mathbb{R}$ such that for $s=s_{0}+\alpha^{*} w_{\max }$ eigenvalue is outside the resonance band.

QEP is hyperbolic \longrightarrow use bisection on α to find how many eigenvalues for

$$
s_{0}+\alpha w_{\max }
$$

are inside the resonance band \mathcal{R}.

The basic isolation algorithm - isolation

Stage 2.

Given optimal direction $w_{\max } \in W^{\perp}$, find smallest $\alpha^{*} \in \mathbb{R}$ such that for $s=s_{0}+\alpha^{*} w_{\max }$ eigenvalue is outside the resonance band.

QEP is hyperbolic \longrightarrow use bisection on α to find how many eigenvalues for

$$
s_{0}+\alpha w_{\max }
$$

are inside the resonance band \mathcal{R}. As soon as the number of eigenvalues in \mathcal{R} is zero-STOP.

The basic isolation algorithm - isolation

Stage 2.

Given optimal direction $w_{\max } \in W^{\perp}$, find smallest $\alpha^{*} \in \mathbb{R}$ such that for $s=s_{0}+\alpha^{*} w_{\max }$ eigenvalue is outside the resonance band.

QEP is hyperbolic \longrightarrow use bisection on α to find how many eigenvalues for

$$
s_{0}+\alpha w_{\max }
$$

are inside the resonance band \mathcal{R}. As soon as the number of eigenvalues in \mathcal{R} is zero-STOP.

OVERALL COST: $O(n)$ per bisection step

The basic isolation algorithm - isolation

Stage 2.

Given optimal direction $w_{\max } \in W^{\perp}$, find smallest $\alpha^{*} \in \mathbb{R}$ such that for $s=s_{0}+\alpha^{*} w_{\max }$ eigenvalue is outside the resonance band.

QEP is hyperbolic \longrightarrow use bisection on α to find how many eigenvalues for

$$
s_{0}+\alpha w_{\max }
$$

are inside the resonance band \mathcal{R}. As soon as the number of eigenvalues in \mathcal{R} is zero-STOP.

OVERALL COST: $O(n)$ per bisection step

Quadratic eigenvalue problem have to stay hyperbolic!

The basic isolation algorithm - isolation

Stage 2.

Given optimal direction $w_{\max } \in W^{\perp}$, find smallest $\alpha^{*} \in \mathbb{R}$ such that for $s=s_{0}+\alpha^{*} w_{\max }$ eigenvalue is outside the resonance band.

QEP is hyperbolic \longrightarrow use bisection on α to find how many eigenvalues for

$$
s_{0}+\alpha w_{\max }
$$

are inside the resonance band \mathcal{R}. As soon as the number of eigenvalues in \mathcal{R} is zero-STOP.

OVERALL COST: $O(n)$ per bisection step

Quadratic eigenvalue problem have to stay hyperbolic!
That is α is between the quantities:
$\tau^{-}=\sqrt{\lambda_{\max }(M) \lambda_{\max }(K)}-\sigma_{\min }(D) \quad$ and $\quad \tau^{+}=\sigma_{\min }(D)-\sqrt{\lambda_{\max }(M) \lambda_{\max }(K)}$.

The basic isolation algorithm - isolation

Stage 2.

Given optimal direction $w_{\max } \in W^{\perp}$, find smallest $\alpha^{*} \in \mathbb{R}$ such that for $s=s_{0}+\alpha^{*} w_{\max }$ eigenvalue is outside the resonance band.

QEP is hyperbolic \longrightarrow use bisection on α to find how many eigenvalues for

$$
s_{0}+\alpha w_{\max }
$$

are inside the resonance band \mathcal{R}. As soon as the number of eigenvalues in \mathcal{R} is zero-STOP.

OVERALL COST: $O(n)$ per bisection step

Quadratic eigenvalue problem have to stay hyperbolic!
Algorithm works only if there are no eigenvalues in \mathcal{R} either for $\alpha=\tau^{-}$or $\alpha=\tau^{+} \longrightarrow$ provides starting interval for bisection.

$I_{\text {out }}$ - options

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?

1. Given $m, \rho_{1}:=c-(m+1) \rho<c-\rho$ and $\rho_{2}:=c+(m+1) \rho>c+\rho$ and all eigenvalues from the sets $\left[\rho_{1}, c-\rho\right)$ and $\left(c+\rho, \rho_{2}\right]$ are considered as "dangerous" eigenvalues and $I_{\text {out }}$ is set of the indices of all these eigenvalues.

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?

1. Given $m, \rho_{1}:=c-(m+1) \rho<c-\rho$ and $\rho_{2}:=c+(m+1) \rho>c+\rho$ and all eigenvalues from the sets $\left[\rho_{1}, c-\rho\right)$ and $\left(c+\rho, \rho_{2}\right]$ are considered as "dangerous" eigenvalues and $I_{\text {out }}$ is set of the indices of all these eigenvalues.

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?

1. Given $m, \rho_{1}:=c-(m+1) \rho<c-\rho$ and $\rho_{2}:=c+(m+1) \rho>c+\rho$ and all eigenvalues from the sets $\left[\rho_{1}, c-\rho\right)$ and $\left(c+\rho, \rho_{2}\right]$ are considered as "dangerous" eigenvalues and $I_{\text {out }}$ is set of the indices of all these eigenvalues.

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?

1. Given $m, \rho_{1}:=c-(m+1) \rho<c-\rho$ and $\rho_{2}:=c+(m+1) \rho>c+\rho$ and all eigenvalues from the sets $\left[\rho_{1}, c-\rho\right.$) and ($c+\rho, \rho_{2}$] are considered as "dangerous" eigenvalues and $I_{\text {out }}$ is set of the indices of all these eigenvalues.

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?
2. First, we compute

$$
\tau_{i n}=\max _{i \in I_{i n}} \frac{\max \left\{\left|\lambda_{i}\left(s_{0}\right)-c+\rho\right|,\left|\lambda_{i}\left(s_{0}-c-\rho\right)\right|\right\}}{\left\|\nabla \lambda_{i} s_{0}\right\|} .
$$

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?
2. First, we compute

$$
\tau_{i n}=\max _{i \in I_{i n}} \frac{\max \left\{\left|\lambda_{i}\left(s_{0}\right)-c+\rho\right|,\left|\lambda_{i}\left(s_{0}-c-\rho\right)\right|\right\}}{\left\|\nabla \lambda_{i} s_{0}\right\|} .
$$

We say that eigenvalue $\lambda_{j}\left(s_{0}\right)$ is dangerous if

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?
2. First, we compute

$$
\tau_{\text {in }}=\max _{i \in I_{i n}} \frac{\max \left\{\left|\lambda_{i}\left(s_{0}\right)-c+\rho\right|,\left|\lambda_{i}\left(s_{0}-c-\rho\right)\right|\right\}}{\left\|\nabla \lambda_{i} s_{0}\right\|} .
$$

We say that eigenvalue $\lambda_{j}\left(s_{0}\right)$ is dangerous if

$$
\frac{\min \left\{\left|\lambda_{j}\left(s_{0}\right)-c+\rho\right|,\left|\lambda_{j}\left(s_{0}\right)-c-\rho\right|\right\}}{\left\|\nabla \lambda_{j}\left(s_{0}\right)\right\|} \leq \text { Tol } \cdot \tau_{i n}
$$

Tol >1 is tolerance.

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?
2. First, we compute

$$
\tau_{i n}=\max _{i \in I_{i n}} \frac{\max \left\{\left|\lambda_{i}\left(s_{0}\right)-c+\rho\right|,\left|\lambda_{i}\left(s_{0}-c-\rho\right)\right|\right\}}{\left\|\nabla \lambda_{i} s_{0}\right\|} .
$$

We say that eigenvalue $\lambda_{j}\left(s_{0}\right)$ is dangerous if

$$
\frac{\min \left\{\left|\lambda_{j}\left(s_{0}\right)-c+\rho\right|,\left|\lambda_{j}\left(s_{0}\right)-c-\rho\right|\right\}}{\left\|\nabla \lambda_{j}\left(s_{0}\right)\right\|} \leq \text { Tol } \cdot \tau_{i n}
$$

Tol >1 is tolerance.

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?
2. First, we compute

$$
\tau_{\text {in }}=\max _{i \in I_{i n}} \frac{\max \left\{\left|\lambda_{i}\left(s_{0}\right)-c+\rho\right|,\left|\lambda_{i}\left(s_{0}-c-\rho\right)\right|\right\}}{\left\|\nabla \lambda_{i} s_{0}\right\|} .
$$

We say that eigenvalue $\lambda_{j}\left(s_{0}\right)$ is dangerous if

$$
\frac{\min \left\{\left|\lambda_{j}\left(s_{0}\right)-c+\rho\right|,\left|\lambda_{j}\left(s_{0}\right)-c-\rho\right|\right\}}{\left\|\nabla \lambda_{j}\left(s_{0}\right)\right\|} \leq \text { Tol } \cdot \tau_{i n}
$$

Tol >1 is tolerance.

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?
2. First, we compute

$$
\tau_{\text {in }}=\max _{i \in I_{i n}} \frac{\max \left\{\left|\lambda_{i}\left(s_{0}\right)-c+\rho\right|,\left|\lambda_{i}\left(s_{0}-c-\rho\right)\right|\right\}}{\left\|\nabla \lambda_{i} s_{0}\right\|} .
$$

We say that eigenvalue $\lambda_{j}\left(s_{0}\right)$ is dangerous if

$$
\frac{\min \left\{\left|\lambda_{j}\left(s_{0}\right)-c+\rho\right|,\left|\lambda_{j}\left(s_{0}\right)-c-\rho\right|\right\}}{\left\|\nabla \lambda_{j}\left(s_{0}\right)\right\|} \leq \text { Tol } \cdot \tau_{i n}
$$

Tol >1 is tolerance.

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?
3. Combination of two previous cases.
$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?
3. Combination of two previous cases.

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?
3. Combination of two previous cases.

$I_{\text {out }}$ - options

How we choose set $I_{\text {out }}$?
3. Combination of two previous cases.

Numerical example

Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-8,-7]$ and $[0,0.5],[1.6,2.1]$ and $[0,0.1]$, respectively.

Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-8,-7]$ and $[0,0.5],[1.6,2.1]$ and $[0,0.1]$, respectively.
For $n=50: 50: 500$ measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\left\|D_{s}-D\right\|_{\infty}}{\left\|D_{s}\right\|_{\infty}}$

Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-8,-7]$ and $[0,0.5],[1.6,2.1]$ and $[0,0.1]$, respectively.
For $n=50: 50: 500$ measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\left\|D_{s}-D\right\|_{\infty}}{\left\|D_{s}\right\|_{\infty}}$

$$
\left(\rho_{1}, \rho_{2}\right)=(c-\rho-3, c+\rho+3)
$$

Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-8,-7]$ and $[0,0.5],[1.6,2.1]$ and $[0,0.1]$, respectively.
For $n=50: 50: 500$ measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\left\|D_{s}-D\right\|_{\infty}}{\left\|D_{s}\right\|_{\infty}}$

$$
\left(\rho_{1}, \rho_{2}\right)=(c-\rho-0.3, c+\rho+0.3)
$$

Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-8,-7]$ and $[0,0.5],[1.6,2.1]$ and $[0,0.1]$, respectively.
For $n=50: 50: 500$ measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\left\|D_{s}-D\right\|_{\infty}}{\left\|D_{s}\right\|_{\infty}}$

Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-8,-7]$ and $[0,0.5],[1.6,2.1]$ and $[0,0.1]$, respectively.
For $n=50: 50: 500$ measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\left\|D_{s}-D\right\|_{\infty}}{\left\|D_{s}\right\|_{\infty}}$

Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-8,-7]$ and $[0,0.5],[1.6,2.1]$ and $[0,0.1]$, respectively.
For $n=50: 50: 500$ measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\left\|D_{s}-D\right\|_{\infty}}{\left\|D_{s}\right\|_{\infty}}$

Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-8,-7]$ and $[0,0.5],[1.6,2.1]$ and $[0,0.1]$, respectively.
For $n=50: 50: 500$ measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\left\|D_{s}-D\right\|_{\infty}}{\left\|D_{s}\right\|_{\infty}}$

Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-8,-7]$ and $[0,0.5],[1.6,2.1]$ and $[0,0.1]$, respectively.
For $n=50: 50: 500$ measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\left\|D_{s}-D\right\|_{\infty}}{\left\|D_{s}\right\|_{\infty}}$

Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-8,-7]$ and $[0,0.5],[1.6,2.1]$ and $[0,0.1]$, respectively.
For $n=50: 50: 500$ measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\left\|D_{s}-D\right\|_{\infty}}{\left\|D_{s}\right\|_{\infty}}$

n	$I_{\text {out }}$	$I_{\text {out }}^{1}$	$I_{\text {out }}^{2}$	Time	Time $_{1}$	Time $_{2}$	Error
50	6	6	1	0.79	0.36	0.31	$5.8582 e-04$
100	14	14	13	1.98	0.84	0.55	$1.8381 e-03$
150	8	8	8	2.91	1.47	1.00	$3.8210 e-03$
200	17	17	14	5.64	2.50	1.96	$5.0559 e-03$
250	7	7	4	9.37	3.78	2.88	$6.3999 e-04$
300	5	5	5	13.51	4.96	4.37	$9.7486 e-04$
350	6	6	6	20.14	8.46	6.97	$2.2452 e-03$
400	7	7	7	31.72	16.54	11.25	$4.4521 e-04$
450	6	6	6	45.94	15.81	14.12	$1.0724 e-03$
500	17	17	17	58.93	26.64	19.56	$8.5720 e-04$

Table: Set $I_{\text {out }}$ before and after selection of "dangerous" eigenvalues for intervals $(0,18),(c-\rho-3, c+\rho+3)$ and $(c-\rho-0.3, c+\rho+0.3)$.

Continuation algorithm

Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D+\Delta D, K)$ sufficiently close to (M, D, K).

Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D+\Delta D, K)$ sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_{0}=\operatorname{Math} \operatorname{ToArr}(D)$ and updating

Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if ($M, D+\Delta D, K$) sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_{0}=\operatorname{Math} \operatorname{ToArr}(D)$ and updating

$$
s_{i+1}=s_{i}+h_{i} w_{\max }^{(i)}
$$

with some appropriate, small step size h_{i}, where $w_{\text {max }}^{(i)}$ is the optimal direction at step i.

Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if ($M, D+\Delta D, K$) sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_{0}=\operatorname{Math} \operatorname{ToArr}(D)$ and updating

$$
s_{i+1}=s_{i}+h_{i} w_{\max }^{(i)}
$$

with some appropriate, small step size h_{i}, where $w_{\text {max }}^{(i)}$ is the optimal direction at step i.
There are several choices for h_{i}. So far:

Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D+\Delta D, K)$ sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_{0}=\operatorname{Math} \operatorname{ToArr}(D)$ and updating

$$
s_{i+1}=s_{i}+h_{i} w_{\max }^{(i)}
$$

with some appropriate, small step size h_{i}, where $w_{\max }^{(i)}$ is the optimal direction at step i.
There are several choices for h_{i}. So far:
Greedy version: Try to isolate in each step, then advance as far as possible in the optimal direction and repeat.

Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if ($M, D+\Delta D, K$) sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_{0}=\operatorname{Math} \operatorname{ToArr}(D)$ and updating

$$
s_{i+1}=s_{i}+h_{i} w_{\max }^{(i)}
$$

with some appropriate, small step size h_{i}, where $w_{\max }^{(i)}$ is the optimal direction at step i.
There are several choices for h_{i}. So far:
Greedy version: Try to isolate in each step, then advance as far as possible in the optimal direction and repeat.

At step i compute $\tau_{i}^{+}, \tau_{i}^{-}$and optimal direction $w_{\max }^{(i)}$.

Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D+\Delta D, K)$ sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_{0}=\operatorname{Math} \operatorname{ToArr}(D)$ and updating

$$
s_{i+1}=s_{i}+h_{i} w_{\max }^{(i)}
$$

with some appropriate, small step size h_{i}, where $w_{\max }^{(i)}$ is the optimal direction at step i.
There are several choices for h_{i}. So far:
Greedy version: Try to isolate in each step, then advance as far as possible in the optimal direction and repeat.

At step i compute $\tau_{i}^{+}, \tau_{i}^{-}$and optimal direction $w_{\text {max }}^{(i)}$.

- If possible, compute α_{i}^{*} isolating the spectrum, take $h_{i}=\alpha_{i}^{*}$ and stop.

Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if ($M, D+\Delta D, K$) sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_{0}=\operatorname{Math} \operatorname{ToArr}(D)$ and updating

$$
s_{i+1}=s_{i}+h_{i} w_{\max }^{(i)}
$$

with some appropriate, small step size h_{i}, where $w_{\max }^{(i)}$ is the optimal direction at step i.
There are several choices for h_{i}. So far:
Greedy version: Try to isolate in each step, then advance as far as possible in the optimal direction and repeat.

At step i compute $\tau_{i}^{+}, \tau_{i}^{-}$and optimal direction $w_{\max }^{(i)}$.

- If possible, compute α_{i}^{*} isolating the spectrum, take $h_{i}=\alpha_{i}^{*}$ and stop.
- If not, take h_{i} take $h_{i}=\tau_{i}^{+}$or $h_{i}=\tau_{i}^{-}$and continue.

Example-continuation algorithm

M, D, K tridiagonal s.t. QEP hyperbolic, $n=50$ Isolation of eigenvalues $\lambda_{89}\left(s_{0}\right)=10.0952, \lambda_{90}\left(s_{0}\right)=10.2558, \lambda_{91}\left(s_{0}\right)=10.3211$, $\lambda_{92}\left(s_{0}\right)=10.3778$ from the resonance band $(c-\rho, c+\rho)=(10,10.4)$.

New eigenvalues: $\lambda_{89}(s)=9.9016, \lambda_{90}(s)=10.0000, \lambda_{91}(s)=10.4863, \lambda_{92}(s)=10.4905$

Example-continuation algorithm

M, D, K tridiagonal s.t. QEP hyperbolic, $n=50$ Isolation of eigenvalues $\lambda_{89}\left(s_{0}\right)=10.0952, \lambda_{90}\left(s_{0}\right)=10.2558, \lambda_{91}\left(s_{0}\right)=10.3211$, $\lambda_{92}\left(s_{0}\right)=10.3778$ from the resonance band $(c-\rho, c+\rho)=(10,10.4)$.

New eigenvalues: $\lambda_{89}(s)=9.9016, \lambda_{90}(s)=10.0000, \lambda_{91}(s)=10.4863, \lambda_{92}(s)=10.4905$

Example-continuation algorithm

M, D, K tridiagonal s.t. QEP hyperbolic, $n=50$ Isolation of eigenvalues $\lambda_{89}\left(s_{0}\right)=10.0952, \lambda_{90}\left(s_{0}\right)=10.2558, \lambda_{91}\left(s_{0}\right)=10.3211$, $\lambda_{92}\left(s_{0}\right)=10.3778$ from the resonance band $(c-\rho, c+\rho)=(10,10.4)$.

New eigenvalues: $\lambda_{89}(s)=9.9016, \lambda_{90}(s)=10.0000, \lambda_{91}(s)=10.4863, \lambda_{92}(s)=10.4905$

Example-continuation algorithm

M, D, K tridiagonal s.t. QEP hyperbolic, $n=50$ Isolation of eigenvalues $\lambda_{89}\left(s_{0}\right)=10.0952, \lambda_{90}\left(s_{0}\right)=10.2558, \lambda_{91}\left(s_{0}\right)=10.3211$, $\lambda_{92}\left(s_{0}\right)=10.3778$ from the resonance band $(c-\rho, c+\rho)=(10,10.4)$.

New eigenvalues: $\lambda_{89}(s)=9.9016, \lambda_{90}(s)=10.0000, \lambda_{91}(s)=10.4863, \lambda_{92}(s)=10.4905$

Example-continuation algorithm

M, D, K tridiagonal s.t. QEP hyperbolic, $n=50$ Isolation of eigenvalues $\lambda_{89}\left(s_{0}\right)=10.0952, \lambda_{90}\left(s_{0}\right)=10.2558, \lambda_{91}\left(s_{0}\right)=10.3211$, $\lambda_{92}\left(s_{0}\right)=10.3778$ from the resonance band $(c-\rho, c+\rho)=(10,10.4)$.

New eigenvalues: $\lambda_{89}(s)=9.9016, \lambda_{90}(s)=10.0000, \lambda_{91}(s)=10.4863, \lambda_{92}(s)=10.4905$

Numerical example - Gyroscopic QEP

Numerical example - Gyroscopic QEP

Gyroscopic QEP:

$$
G(\lambda)=\left(\lambda^{2} M+\lambda D+K\right) x=0 \quad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^{n}
$$

Numerical example - Gyroscopic QEP

Gyroscopic QEP:

$$
G(\lambda)=\left(\lambda^{2} M+\lambda D+K\right) x=0 \quad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^{n}
$$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.

Numerical example - Gyroscopic QEP

Gyroscopic QEP:

$$
G(\lambda)=\left(\lambda^{2} M+\lambda D+K\right) x=0 \quad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^{n}
$$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.
M, K and D are chosen such that the system is stable \rightarrow all eigenvalues are purely imaginary and semi-simple.

Numerical example - Gyroscopic QEP

Gyroscopic QEP:

$$
G(\lambda)=\left(\lambda^{2} M+\lambda D+K\right) x=0 \quad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^{n}
$$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.
M, K and D are chosen such that the system is stable \rightarrow all eigenvalues are purely imaginary and semi-simple.

Numerical example - Gyroscopic QEP

Gyroscopic QEP:

$$
G(\lambda)=\left(\lambda^{2} M+\lambda D+K\right) x=0 \quad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^{n}
$$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.
M, K and D are chosen such that the system is stable \rightarrow all eigenvalues are purely imaginary and semi-simple. Then the QEP

$$
Q(\lambda):=-G(-\mathrm{i} \lambda)=\lambda^{2} M+\lambda(\mathrm{i} D)-K
$$

is Hermitian and hyperbolic.

Numerical example - Gyroscopic QEP

Gyroscopic QEP:

$$
G(\lambda)=\left(\lambda^{2} M+\lambda D+K\right) x=0 \quad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^{n}
$$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.
M, K and D are chosen such that the system is stable \rightarrow all eigenvalues are purely imaginary and semi-simple. Then the QEP

$$
Q(\lambda):=-G(-\mathrm{i} \lambda)=\lambda^{2} M+\lambda(\mathrm{i} D)-K
$$

is Hermitian and hyperbolic.
In this example: M and K are tridiagonal matrix with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-0.5,0]$ and $[0,0.1]$, respectively.

Numerical example - Gyroscopic QEP

Gyroscopic QEP:

$$
G(\lambda)=\left(\lambda^{2} M+\lambda D+K\right) x=0 \quad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^{n}
$$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.
M, K and D are chosen such that the system is stable \rightarrow all eigenvalues are purely imaginary and semi-simple. Then the QEP

$$
Q(\lambda):=-G(-\mathrm{i} \lambda)=\lambda^{2} M+\lambda(\mathrm{i} D)-K
$$

is Hermitian and hyperbolic.
In this example: M and K are tridiagonal matrix with diagonal and codiagonal elements uniformly distributed in $[0.5,1]$ and $[0,0.1],[-0.5,0]$ and $[0,0.1]$, respectively.
The diagonal and codiagonal elements of the matrix D are uniformly distributed in $[-5 i,-4 i]$ and $[0 i, 0.5 i]$, respectively.

Numerical example

* are einegvalues with indices in set $I_{\text {out }}$ for different tolerance $T o l_{1}$

Figure: $_{\text {ol }}^{1} 1=0.5$

Numerical example

* are einegvalues with indices in set $I_{\text {out }}$ for different tolerance $T o l_{1}$

Figure: $^{\text {ol }} l_{1}=1$

Numerical example

* are einegvalues with indices in set $I_{\text {out }}$ for different tolerance $T o l_{1}$

Figure: Tol $_{1}=2$

Numerical example

* are einegvalues with indices in set $I_{\text {out }}$ for different tolerance $T o l_{1}$

Figure: Tol $_{1}=4$

Conclusions

Conclusions

We have:

Conclusions

We have:
Algorithm for the frequency isolation problem proposed for hyperbolic QEPs.

Conclusions

We have:

Algorithm for the frequency isolation problem proposed for hyperbolic QEPs. Tested only for tridiagonal case, with simple eigenvalues.

Conclusions

We have:

Algorithm for the frequency isolation problem proposed for hyperbolic QEPs. Tested only for tridiagonal case, with simple eigenvalues.
\checkmark Basic isolation algoritham: cost $O\left(n^{3}\right)$, works for systems close to non-resonance

Conclusions

We have:

Algorithm for the frequency isolation problem proposed for hyperbolic QEPs. Tested only for tridiagonal case, with simple eigenvalues.
\checkmark Basic isolation algoritham: cost $O\left(n^{3}\right)$, works for systems close to non-resonance
\checkmark Continuation algoritham: cost $O\left(n^{3}\right)$ per step, works irrespective of spectral distribution or distnace to non-resonance.

Conclusions

We have:

Algorithm for the frequency isolation problem proposed for hyperbolic QEPs. Tested only for tridiagonal case, with simple eigenvalues.
\checkmark Basic isolation algoritham: cost $O\left(n^{3}\right)$, works for systems close to non-resonance
\checkmark Continuation algoritham: cost $O\left(n^{3}\right)$ per step, works irrespective of spectral distribution or distnace to non-resonance.

Thank you for attention!

