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Summary

◦ Hyperbolic quadratic eigenvalue problem

◦ Frequency isolation algorithms
◦ Basic isolation algorithm
◦ Continuation algorithm

◦ Numerical examples

Motivated by: J.Moro and J.Egaña, Directional algorithms for the frequency
isolation problem in undamped vibrational systems, Mechanical Systems and
Signal Processing, 2016.

Suzana Miodragović Frequency isolation problem for hyperbolic QEP 2/16



Summary

◦ Hyperbolic quadratic eigenvalue problem

◦ Frequency isolation algorithms
◦ Basic isolation algorithm
◦ Continuation algorithm

◦ Numerical examples

Motivated by: J.Moro and J.Egaña, Directional algorithms for the frequency
isolation problem in undamped vibrational systems, Mechanical Systems and
Signal Processing, 2016.
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Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem (HQEP)(
λ2M + λD +K

)
x = 0 ,

where M,D,K ∈ Cn×n are Hermitian matrices, M > 0 and

(xTDx)2 > 4
(
xTMx

) (
xTKx

)
, ∀0 6= x ∈ Cn .

Nice properties of the hyperbolic QEPs:

◦ 2n real and semisimple eigenvalues

◦ eigenvalues can be obtained by bisection

Problem
When the eigenvalues of the QEP are in certain region, vibration system
experiences dangerous vibrations (resonance) and M , D and K should be
chosen in such way that this spectral regions are avoided.
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Suzana Miodragović Frequency isolation problem for hyperbolic QEP 3/16



Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem (HQEP)(
λ2M + λD +K

)
x = 0 ,

where M,D,K ∈ Cn×n are Hermitian matrices, M > 0 and

(xTDx)2 > 4
(
xTMx

) (
xTKx

)
, ∀0 6= x ∈ Cn .

Nice properties of the hyperbolic QEPs:

◦ 2n real and semisimple eigenvalues

◦ eigenvalues can be obtained by bisection

Problem
When the eigenvalues of the QEP are in certain region, vibration system
experiences dangerous vibrations (resonance) and M , D and K should be
chosen in such way that this spectral regions are avoided.
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Problem

QUESTION! How to avoid resonance?
The idea is to slightly modify some of the coefficient matrices M , D or K that
this spectral regions are avoided!
More precise - we fix a certain tolerance ρ and define a so-called resonance band

R = (c− ρ, c+ ρ)

where c is the dangerous frequency or any other quantity that should be kept
away from the spectrum.

Frequency isolation problem

Given resonance bandR = (c− ρ, c+ ρ) and vibrational system (M,D,K)
with some eigenvalue in (c− ρ, c+ ρ), modify system in such way that the new
system (M + ∆M,D + ∆D,K + ∆K)

◦ has no eigenvalue in the resonance band and

◦ is close (in some sense) to original system (M,D,K)
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Preservation of hyperbolicity

Theorem (F.Tisseur, N.J.Higham, P. Van Doren ’02)

A system λ2M + λD +K with M Hermitian positive definite and D and K
Hermitian is hyperbolic if the following inequality holds:

σmin(D)2 > 4λmax(M)λmax(K) .

Corollary

Let λ2M + λD +K be hyperbolic and ∆D a Hermitian perturbation of the
damping matrix, D, such that

‖ ∆D ‖2< σmin(D)− 2
√
λmax(M)λmax(K) .

Then the perturbed system λ2M + λ(D + ∆D) +K is hyperbolic.
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The basic isolation algorithm

Consider: hyperbolic QEP, M , D and K are tridiagonal and simple eigenvalues
- :

Q() = λ2M + λ+K

Ds is an n× n matrix depending on the parameters sk, k = 1, . . . , 2n− 1, if
s = s0 then Ds = D.

Idea of the algorithm:

Identify a direction in (M,D,K) space along which:

◦ variation of "inside" eigenvalues is maximal, and

◦ variation of "outside" eigenvalues is minimal.

Then, modify (M,D,K) along this direction up to isolation.

λj is considered as the function of data s = (s1, s2, . . . , s2n−1) ∈ R2n−1

Work in parametar space R2n−1 instead in matrix space Rn×n!
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Suzana Miodragović Frequency isolation problem for hyperbolic QEP 6/16



The basic isolation algorithm

Consider: hyperbolic QEP, M , D and K are tridiagonal and simple eigenvalues
- modified (perturbed) system:

Q(s) = λ2M + λDs +K

Ds is an n× n matrix depending on the parameters sk, k = 1, . . . , 2n− 1, if
s = s0 then Ds = D.

Idea of the algorithm:

Identify a direction in (M,D,K) space along which:

◦ variation of "inside" eigenvalues is maximal, and

◦ variation of "outside" eigenvalues is minimal.

Then, modify (M,D,K) along this direction up to isolation.

λj is considered as the function of data s = (s1, s2, . . . , s2n−1) ∈ R2n−1

Work in parametar space R2n−1 instead in matrix space Rn×n!
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The basic isolation algorithm

Denote by Iin and Iout the subsets of {1, ..., 2n}, set of indices of the
eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s0, gives

λj(s) = λj(s0) + 〈∇λj(s0), δs〉+ · · · ,where δs = s− s0

First order term 〈∇λj(s0), δs〉 should be:

1. as large as possible for λj , j ∈ Iin
2. as small as possible for λj , j ∈ Iout
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First order term 〈∇λj(s0), δs〉 should be:

1. as large as possible for λj , j ∈ Iin
2. as small as possible for λj , j ∈ Iout

Since
δs ⊥ ∇λj(s0) for all j ∈ Iout

denote

W⊥ =
{
w ∈ R2n−1 : 〈∇λj(s0), w〉 = 0, j ∈ Iout

}

Suzana Miodragović Frequency isolation problem for hyperbolic QEP 7/16



The basic isolation algorithm

Denote by Iin and Iout the subsets of {1, ..., 2n}, set of indices of the
eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s0, gives

λj(s) = λj(s0) + 〈∇λj(s0), δs〉+ · · · ,where δs = s− s0

First order term 〈∇λj(s0), δs〉 should be:

1. as large as possible for λj , j ∈ Iin
2. as small as possible for λj , j ∈ Iout

Since
δs ⊥ ∇λj(s0) for all j ∈ Iout

denote

W⊥ =
{
w ∈ R2n−1 : 〈∇λj(s0), w〉 = 0, j ∈ Iout

}
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Denote by Iin and Iout the subsets of {1, ..., 2n}, set of indices of the
eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to s0, gives

λj(s) = λj(s0) + 〈∇λj(s0), δs〉+ · · · ,where δs = s− s0
First order term 〈∇λj(s0), δs〉 should be:

1. as large as possible for λj , j ∈ Iin
2. as small as possible for λj , j ∈ Iout

Two stages of the isolation process:

1. Choice of direction: Determine unit vector wmax ∈W⊥ such that

〈∇λj(s0), δs〉, j ∈ Iin

are maximal, in some sence.

2. Isolation: Given wmax from Stage 1., find smallest α∗ ∈ R such that
eigenvalues correspond to s = s0 + α∗wmax are outside theR.
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The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction wmax ∈W⊥.

Compute:

◦ Directional derivatives of all eigenvalues

−→ requires all eigenvectors of
initial QEP. Sometimes we don’t have to do it for all eigenvalues!

EXPLAIN later!

◦ Orthonormal basis of W⊥ (e.g. via QR factorization)

◦ wmax is singular vector that correspond to σmax of scalar product matrix,
that is Π ∈ Rq×q with

πj,t = 〈∇λj(s0), wt〉,

in the position (j, t), j, t = 1, . . . , q.

OVERALL COST: O(n3)
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Suzana Miodragović Frequency isolation problem for hyperbolic QEP 8/16



The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction wmax ∈W⊥.

Compute:

◦ Directional derivatives of all eigenvalues −→ requires all eigenvectors of
initial QEP. Sometimes we don’t have to do it for all eigenvalues!

EXPLAIN later!

◦ Orthonormal basis of W⊥ (e.g. via QR factorization)

◦ wmax is singular vector that correspond to σmax of scalar product matrix,
that is Π ∈ Rq×q with

πj,t = 〈∇λj(s0), wt〉,

in the position (j, t), j, t = 1, . . . , q.

OVERALL COST: O(n3)
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The basic isolation algorithm - isolation

Stage 2.

Given optimal direction wmax ∈W⊥, find smallest α∗ ∈ R such that for
s = s0 + α∗wmax eigenvalue is outside the resonance band.

QEP is hyperbolic−→use bisection on α to find how many eigenvalues for

s0 + αwmax

are inside the resonance bandR

.

As soon as the number of eigenvalues inR is
zero - STOP.

OVERALL COST: O(n) per bisection step
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Stage 2.

Given optimal direction wmax ∈W⊥, find smallest α∗ ∈ R such that for
s = s0 + α∗wmax eigenvalue is outside the resonance band.

QEP is hyperbolic−→use bisection on α to find how many eigenvalues for

s0 + αwmax

are inside the resonance bandR. As soon as the number of eigenvalues inR is
zero - STOP.

OVERALL COST: O(n) per bisection step

Quadratic eigenvalue problem have to stay hyperbolic!
That is α is between the quantities:

τ− =
√
λmax(M)λmax(K)−σmin(D) and τ+ = σmin(D)−

√
λmax(M)λmax(K) .
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The basic isolation algorithm - isolation

Stage 2.

Given optimal direction wmax ∈W⊥, find smallest α∗ ∈ R such that for
s = s0 + α∗wmax eigenvalue is outside the resonance band.

QEP is hyperbolic−→use bisection on α to find how many eigenvalues for

s0 + αwmax

are inside the resonance bandR. As soon as the number of eigenvalues inR is
zero - STOP.

OVERALL COST: O(n) per bisection step

Quadratic eigenvalue problem have to stay hyperbolic!
Algorithm works only if there are no eigenvalues inR either for α = τ− or
α = τ+ −→ provides starting interval for bisection.
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Iout - options

How we choose set Iout?

Suzana Miodragović Frequency isolation problem for hyperbolic QEP 10/16



Iout - options

How we choose set Iout?
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Iout - options

How we choose set Iout?
1. Given m, ρ1 := c− (m+ 1)ρ < c− ρ and ρ2 := c+ (m+ 1)ρ > c+ ρ
and all eigenvalues from the sets [ρ1, c− ρ) and (c+ ρ, ρ2] are considered as
"dangerous" eigenvalues and Iout is set of the indices of all these eigenvalues.
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Suzana Miodragović Frequency isolation problem for hyperbolic QEP 10/16



Iout - options

How we choose set Iout?
1. Given m, ρ1 := c− (m+ 1)ρ < c− ρ and ρ2 := c+ (m+ 1)ρ > c+ ρ
and all eigenvalues from the sets [ρ1, c− ρ) and (c+ ρ, ρ2] are considered as
"dangerous" eigenvalues and Iout is set of the indices of all these eigenvalues.

λi−3 λi−2λi−1 λi λi+1 λi+2 λi+3 λi+4
(
ρ1

(
c− ρ

)
c+ ρ
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Iout - options

How we choose set Iout?
2. First, we compute

τin = max
i∈Iin

max {|λi(s0)− c+ ρ|, |λi(s0 − c− ρ)|}
‖∇λis0‖

.
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min {|λj(s0)− c+ ρ|, |λj(s0)− c− ρ|}
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≤ Tol · τin,

T ol > 1 is tolerance.
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Suzana Miodragović Frequency isolation problem for hyperbolic QEP 10/16



Numerical example

M , D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly
distributed in [0.5, 1] and [0, 0.1], [−8,−7] and [0, 0.5], [1.6, 2.1] and [0, 0.1],
respectively.
For n = 50 : 50 : 500 measure time needed for isolation of one eigenvalue by basic
algorithm and relative error in parameters ie. ‖Ds−D‖∞

‖Ds‖∞
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Numerical example

M , D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly
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For n = 50 : 50 : 500 measure time needed for isolation of one eigenvalue by basic
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n Iout I1out I2out Time Time1 Time2 Error
50 6 6 1 0.79 0.36 0.31 5.8582e− 04
100 14 14 13 1.98 0.84 0.55 1.8381e− 03
150 8 8 8 2.91 1.47 1.00 3.8210e− 03
200 17 17 14 5.64 2.50 1.96 5.0559e− 03
250 7 7 4 9.37 3.78 2.88 6.3999e− 04
300 5 5 5 13.51 4.96 4.37 9.7486e− 04
350 6 6 6 20.14 8.46 6.97 2.2452e− 03
400 7 7 7 31.72 16.54 11.25 4.4521e− 04
450 6 6 6 45.94 15.81 14.12 1.0724e− 03
500 17 17 17 58.93 26.64 19.56 8.5720e− 04

Table: Set Iout before and after selection of "dangerous" eigenvalues for intervals
(0, 18), (c− ρ− 3, c+ ρ+ 3) and (c− ρ− 0.3, c+ ρ+ 0.3).
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Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor
approximation sufficiently accurate, i.e., if (M,D + ∆D,K) sufficiently close to
(M,D,K). Instead of trying to isolate in one single run, repeat basic isolation
procedure over and over, setting s0 = MathToArr(D) and updating

si+1 = si + hiw
(i)
max,

with some appropriate, small step size hi, where w
(i)
max is the optimal direction at

step i.
There are several choices for hi. So far:

Greedy version: Try to isolate in each step, then advance as far as possible in the
optimal direction and repeat.

At step i compute τ+i , τ−i and optimal direction w
(i)
max.

◦ If possible, compute α∗i isolating the spectrum, take hi = α∗i and stop.

◦ If not, take hi take hi = τ+i or hi = τ−i and continue.
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Suzana Miodragović Frequency isolation problem for hyperbolic QEP 12/16



Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor
approximation sufficiently accurate, i.e., if (M,D + ∆D,K) sufficiently close to
(M,D,K). Instead of trying to isolate in one single run, repeat basic isolation
procedure over and over, setting s0 = MathToArr(D) and updating

si+1 = si + hiw
(i)
max,

with some appropriate, small step size hi, where w
(i)
max is the optimal direction at

step i.
There are several choices for hi. So far:

Greedy version: Try to isolate in each step, then advance as far as possible in the
optimal direction and repeat.

At step i compute τ+i , τ−i and optimal direction w
(i)
max.

◦ If possible, compute α∗i isolating the spectrum, take hi = α∗i and stop.

◦ If not, take hi take hi = τ+i or hi = τ−i and continue.

Suzana Miodragović Frequency isolation problem for hyperbolic QEP 12/16



Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor
approximation sufficiently accurate, i.e., if (M,D + ∆D,K) sufficiently close to
(M,D,K). Instead of trying to isolate in one single run, repeat basic isolation
procedure over and over, setting s0 = MathToArr(D) and updating

si+1 = si + hiw
(i)
max,

with some appropriate, small step size hi, where w
(i)
max is the optimal direction at

step i.
There are several choices for hi. So far:

Greedy version: Try to isolate in each step, then advance as far as possible in the
optimal direction and repeat.

At step i compute τ+i , τ−i and optimal direction w
(i)
max.

◦ If possible, compute α∗i isolating the spectrum, take hi = α∗i and stop.

◦ If not, take hi take hi = τ+i or hi = τ−i and continue.
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Example-continuation algorithm

M,D,K tridiagonal s.t. QEP hyperbolic, n = 50
Isolation of eigenvalues λ89(s0) = 10.0952, λ90(s0) = 10.2558, λ91(s0) = 10.3211,
λ92(s0) = 10.3778 from the resonance band (c− ρ, c+ ρ) = (10, 10.4).
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New eigenvalues: λ89(s) = 9.9016, λ90(s) = 10.0000, λ91(s) = 10.4863, λ92(s) = 10.4905
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Suzana Miodragović Frequency isolation problem for hyperbolic QEP 13/16



Example-continuation algorithm

M,D,K tridiagonal s.t. QEP hyperbolic, n = 50
Isolation of eigenvalues λ89(s0) = 10.0952, λ90(s0) = 10.2558, λ91(s0) = 10.3211,
λ92(s0) = 10.3778 from the resonance band (c− ρ, c+ ρ) = (10, 10.4).

0 20 40 60 80 100
0

2

4

6

8

10

12

14

80 85 90 95
9

9.5

10

10.5

11

c-ρ
c+ρ
λ(s

0
)

λ(s)

New eigenvalues: λ89(s) = 9.9016, λ90(s) = 10.0000, λ91(s) = 10.4863, λ92(s) = 10.4905
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Suzana Miodragović Frequency isolation problem for hyperbolic QEP 13/16



Numerical example - Gyroscopic QEP

Gyroscopic QEP:

G(λ) = (λ2M + λD +K)x = 0 λ ∈ C 0 6= x ∈ Cn

where M and K are tridiagonal Hermitian matrices, D is tridiagonal
skew-Hermitian.
M , K and D are chosen such that the system is stable→ all eigenvalues are
purely imaginary and semi-simple. Then the QEP

Q(λ) := −G(−iλ) = λ2M + λ(iD)−K

is Hermitian and hyperbolic.
In this example: M and K are tridiagonal matrix with diagonal and codiagonal
elements uniformly distributed in [0.5, 1] and [0, 0.1], [−0.5, 0] and [0, 0.1],
respectively.
The diagonal and codiagonal elements of the matrix D are uniformly distributed
in [−5i,−4i] and [0i, 0.5i], respectively.
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Numerical example

∗ are einegvalues with indices in set Iout for different tolerance Tol1
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Conclusions

We have:
Algorithm for the frequency isolation problem proposed for hyperbolic QEPs.
Tested only for tridiagonal case, with simple eigenvalues.

X Basic isolation algoritham: cost O(n3), works for systems close to
non-resonance

X Continuation algoritham: cost O(n3) per step, works irrespective of
spectral distribution or distnace to non-resonance.

Thank you for attention!
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