3.10pt

Frequency isolation problem for hyperbolic QEP

Suzana Miodragović

UNIVERSITY J. J. STROSSMAYER OF OSIJEK DEPARTMENT OF MATHEMATICS Trg Ljudevita Gaja 6 31000 Osijek, Croatia http://www.mathos.unios.hr

ssusic@mathos.hr

Joint work with:

J. Moro, F. de Teran, N. Truhar

SVEV/

[WORKSHOP ON CONTROL OF DYNAMICAL SYSTEMS] 15.

15.6.2021

Frequency isolation problem for hyperbolic QEP

Summary

- Hyperbolic quadratic eigenvalue problem
- Frequency isolation algorithms
 - Basic isolation algorithm
 - Continuation algorithm
- Numerical examples

Summary

- Hyperbolic quadratic eigenvalue problem
- Frequency isolation algorithms
 - Basic isolation algorithm
 - Continuation algorithm
- Numerical examples

Motivated by: J.Moro and J.Egaña, *Directional algorithms for the frequency isolation problem in undamped vibrational systems*, Mechanical Systems and Signal Processing, 2016.

Hyperbolic quadratic eigenvalue problem (HQEP)

$$\left(\lambda^2 M + \lambda D + K\right) x = 0\,,$$

Hyperbolic quadratic eigenvalue problem (HQEP)

$$\left(\lambda^2 M + \lambda D + K\right) x = 0,$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, M > 0 and

Hyperbolic quadratic eigenvalue problem (HQEP)

$$\left(\lambda^2 M + \lambda D + K\right) x = 0\,,$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, M > 0 and

$$(x^T D x)^2 > 4 (x^T M x) (x^T K x), \quad \forall 0 \neq x \in \mathbb{C}^n.$$

Hyperbolic quadratic eigenvalue problem (HQEP)

$$\left(\lambda^2 M + \lambda D + K\right) x = 0\,,$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, M > 0 and

$$(x^T D x)^2 > 4 (x^T M x) (x^T K x), \quad \forall 0 \neq x \in \mathbb{C}^n.$$

Nice properties of the hyperbolic QEPs:

Hyperbolic quadratic eigenvalue problem (HQEP)

$$\left(\lambda^2 M + \lambda D + K\right) x = 0\,,$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, M > 0 and

$$(x^T D x)^2 > 4 (x^T M x) (x^T K x), \quad \forall 0 \neq x \in \mathbb{C}^n$$

Nice properties of the hyperbolic QEPs:

 $\circ 2n$ real and semisimple eigenvalues

Hyperbolic quadratic eigenvalue problem (HQEP)

$$\left(\lambda^2 M + \lambda D + K\right) x = 0,$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, M > 0 and

$$(x^T D x)^2 > 4 (x^T M x) (x^T K x), \quad \forall 0 \neq x \in \mathbb{C}^n$$

Nice properties of the hyperbolic QEPs:

- 2n real and semisimple eigenvalues
- eigenvalues can be obtained by bisection

Hyperbolic quadratic eigenvalue problem (HQEP)

$$\left(\lambda^2 M + \lambda D + K\right) x = 0\,,$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices, M > 0 and

$$(x^T D x)^2 > 4 (x^T M x) (x^T K x), \quad \forall 0 \neq x \in \mathbb{C}^n$$

Nice properties of the hyperbolic QEPs:

- 2n real and semisimple eigenvalues
- o eigenvalues can be obtained by bisection

Problem

When the eigenvalues of the QEP are in certain region, vibration system experiences dangerous vibrations (resonance) and M, D and K should be chosen in such way that this spectral regions are avoided.

QUESTION!

QUESTION! How to avoid resonance?

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!

More precise - we fix a certain tolerance ρ and define a so-called resonance band

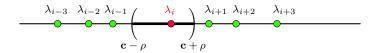
$$\mathcal{R} = (c - \rho, c + \rho)$$

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!

More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$\mathcal{R} = (c - \rho, c + \rho)$$

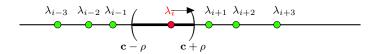


QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!

More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$\mathcal{R} = (c - \rho, c + \rho)$$

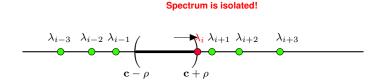


QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!

More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$\mathcal{R} = (c - \rho, c + \rho)$$



QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!

More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$\mathcal{R} = (c - \rho, c + \rho)$$

where c is the dangerous frequency or any other quantity that should be kept away from the spectrum.

Frequency isolation problem

Given resonance band $\mathcal{R} = (c - \rho, c + \rho)$ and vibrational system (M, D, K) with some eigenvalue in $(c - \rho, c + \rho)$, modify system in such way that the new system $(M + \Delta M, D + \Delta D, K + \Delta K)$

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!

More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$\mathcal{R} = (c - \rho, c + \rho)$$

where c is the dangerous frequency or any other quantity that should be kept away from the spectrum.

Frequency isolation problem

Given resonance band $\mathcal{R} = (c - \rho, c + \rho)$ and vibrational system (M, D, K) with some eigenvalue in $(c - \rho, c + \rho)$, modify system in such way that the new system $(M + \Delta M, D + \Delta D, K + \Delta K)$

• has no eigenvalue in the resonance band and

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that this spectral regions are avoided!

More precise - we fix a certain tolerance ρ and define a so-called resonance band

$$\mathcal{R} = (c - \rho, c + \rho)$$

where c is the dangerous frequency or any other quantity that should be kept away from the spectrum.

Frequency isolation problem

Given resonance band $\mathcal{R} = (c - \rho, c + \rho)$ and vibrational system (M, D, K) with some eigenvalue in $(c - \rho, c + \rho)$, modify system in such way that the new system $(M + \Delta M, D + \Delta D, K + \Delta K)$

- has no eigenvalue in the resonance band and
- $\circ~$ is close (in some sense) to original system (M,D,K)

Preservation of hyperbolicity

Suzana Miodragović

Preservation of hyperbolicity

Theorem (F.Tisseur, N.J.Higham, P. Van Doren '02)

A system $\lambda^2 M + \lambda D + K$ with M Hermitian positive definite and D and K Hermitian is hyperbolic if the following inequality holds:

 $\sigma_{\min}(D)^2 > 4\lambda_{\max}(M)\lambda_{\max}(K)$.

Preservation of hyperbolicity

Theorem (F.Tisseur, N.J.Higham, P. Van Doren '02)

A system $\lambda^2 M + \lambda D + K$ with M Hermitian positive definite and D and K Hermitian is hyperbolic if the following inequality holds:

$$\sigma_{\min}(D)^2 > 4\lambda_{\max}(M)\lambda_{\max}(K)$$
.

Corollary

Let $\lambda^2M+\lambda D+K$ be hyperbolic and ΔD a Hermitian perturbation of the damping matrix, D, such that

$$\|\Delta D\|_{2} < \sigma_{\min}(D) - 2\sqrt{\lambda_{\max}(M)\lambda_{\max}(K)}.$$

Then the perturbed system $\lambda^2 M + \lambda (D + \Delta D) + K$ is hyperbolic.

Consider: hyperbolic QEP,

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - initial (unperturbed) system:

$$Q(s_0) = \lambda^2 M + \lambda D + K$$

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - initial (unperturbed) system:

$$Q(s_0) = \lambda^2 M + \lambda \mathbf{D} + K$$

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$Q(\mathbf{s}) = \lambda^2 M + \lambda \mathbf{D}_{\mathbf{s}} + K$$

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$Q(\mathbf{s}) = \lambda^2 M + \lambda \mathbf{D}_{\mathbf{s}} + K$$

 D_s is an $n \times n$ matrix depending on the parameters s_k , k = 1, ..., 2n - 1, if $s = s_0$ then $D_s = D$.

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$Q(\mathbf{s}) = \lambda^2 M + \lambda \mathbf{D}_{\mathbf{s}} + K$$

 D_s is an $n \times n$ matrix depending on the parameters s_k , k = 1, ..., 2n - 1, if $s = s_0$ then $D_s = D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$Q(\mathbf{s}) = \lambda^2 M + \lambda \mathbf{D}_{\mathbf{s}} + K$$

 D_s is an $n \times n$ matrix depending on the parameters s_k , k = 1, ..., 2n - 1, if $s = s_0$ then $D_s = D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

o variation of "inside" eigenvalues is maximal, and

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$Q(\mathbf{s}) = \lambda^2 M + \lambda \mathbf{D}_{\mathbf{s}} + K$$

 D_s is an $n \times n$ matrix depending on the parameters s_k , k = 1, ..., 2n - 1, if $s = s_0$ then $D_s = D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

- o variation of "inside" eigenvalues is maximal, and
- variation of "outside" eigenvalues is **minimal**.

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$Q(\mathbf{s}) = \lambda^2 M + \lambda \mathbf{D}_{\mathbf{s}} + K$$

 D_s is an $n \times n$ matrix depending on the parameters s_k , k = 1, ..., 2n - 1, if $s = s_0$ then $D_s = D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

- o variation of "inside" eigenvalues is maximal, and
- variation of "outside" eigenvalues is minimal.

Then, modify (M, D, K) along this direction up to isolation.

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$Q(\mathbf{s}) = \lambda^2 M + \lambda \mathbf{D}_{\mathbf{s}} + K$$

 D_s is an $n \times n$ matrix depending on the parameters s_k , k = 1, ..., 2n - 1, if $s = s_0$ then $D_s = D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

- o variation of "inside" eigenvalues is maximal, and
- variation of "outside" eigenvalues is minimal.

Then, modify (M, D, K) along this direction up to isolation.

 λ_j is considered as the function of data $s=(s_1,s_2,\ldots,s_{2n-1})\in \mathbb{R}^{2n-1}$

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues - modified (perturbed) system:

$$Q(\mathbf{s}) = \lambda^2 M + \lambda \mathbf{D}_{\mathbf{s}} + K$$

 D_s is an $n \times n$ matrix depending on the parameters s_k , k = 1, ..., 2n - 1, if $s = s_0$ then $D_s = D$.

Idea of the algorithm:

Identify a direction in (M, D, K) space along which:

- o variation of "inside" eigenvalues is maximal, and
- variation of "outside" eigenvalues is minimal.

Then, modify (M, D, K) along this direction up to isolation.

 λ_j is considered as the function of data $s=(s_1,s_2,\ldots,s_{2n-1})\in \mathbb{R}^{2n-1}$

Work in parametar space \mathbb{R}^{2n-1} instead in matrix space $\mathbb{R}^{n \times n}$!

Suzana Miodragović

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band.

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band. Taylor expansions, for each *s* close to s_0 , gives

 $\lambda_j(s) = \lambda_j(s_0) + \langle \nabla \lambda_j(s_0), \delta s \rangle + \cdots$, where $\delta s = s - s_0$

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band. Taylor expansions, for each *s* close to s_0 , gives

$$\lambda_j(s) = \lambda_j(s_0) + \langle \nabla \lambda_j(s_0), \delta s \rangle + \cdots$$
, where $\delta s = s - s_0$

First order term $\langle \nabla \lambda_j(s_0), \delta s \rangle$ should be:

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band. Taylor expansions, for each *s* close to s_0 , gives

$$\lambda_j(s) = \lambda_j(s_0) + \langle \nabla \lambda_j(s_0), \delta s \rangle + \cdots$$
, where $\delta s = s - s_0$

First order term $\langle \nabla \lambda_j(s_0), \delta s \rangle$ should be:

1. as large as possible for $\lambda_j, j \in I_{in}$

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band. Taylor expansions, for each *s* close to s_0 , gives

 $\lambda_j(s) = \lambda_j(s_0) + \langle \nabla \lambda_j(s_0), \delta s \rangle + \cdots$, where $\delta s = s - s_0$

First order term $\langle \nabla \lambda_j(s_0), \delta s \rangle$ should be:

- 1. as large as possible for $\lambda_j, j \in I_{in}$
- 2. as small as possible for $\lambda_j, j \in I_{out}$

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band. Taylor expansions, for each *s* close to s_0 , gives

$$\lambda_j(s) = \lambda_j(s_0) + \langle \nabla \lambda_j(s_0), \delta s \rangle + \cdots$$
, where $\delta s = s - s_0$

First order term $\langle \nabla \lambda_j(s_0), \delta s \rangle$ should be:

- 1. as large as possible for $\lambda_j, j \in I_{in}$
- 2. as small as possible for $\lambda_j, j \in I_{out}$

Since

$$\delta s \perp \nabla \lambda_j(s_0)$$
 for all $j \in I_{out}$

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band. Taylor expansions, for each *s* close to s_0 , gives

$$\lambda_j(s) = \lambda_j(s_0) + \langle \nabla \lambda_j(s_0), \delta s \rangle + \cdots$$
, where $\delta s = s - s_0$

First order term $\langle \nabla \lambda_j(s_0), \delta s \rangle$ should be:

- 1. as large as possible for $\lambda_j, j \in I_{in}$
- 2. as small as possible for $\lambda_j, j \in I_{out}$

Since

$$\delta s \perp \nabla \lambda_j(s_0)$$
 for all $j \in I_{out}$

denote

$$W^{\perp} = \left\{ w \in \mathbb{R}^{2n-1} : \langle \nabla \lambda_j(s_0), w \rangle = 0, j \in I_{out} \right\}$$

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band. Taylor expansions, for each *s* close to s_0 , gives

$$\lambda_j(s) = \lambda_j(s_0) + \langle \nabla \lambda_j(s_0), \delta s \rangle + \cdots$$
, where $\delta s = s - s_0$

First order term $\langle \nabla \lambda_j(s_0), \delta s \rangle$ should be:

- 1. as large as possible for $\lambda_j, j \in I_{in}$
- 2. as small as possible for $\lambda_j, j \in I_{out}$

Since

$$\delta s \perp \nabla \lambda_j(s_0)$$
 for all $j \in I_{out}$

denote

$$W^{\perp} = \left\{ w \in \mathbb{R}^{2n-1} : \langle \nabla \lambda_j(s_0), w \rangle = 0, j \in I_{out} \right\}$$

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band. Taylor expansions, for each *s* close to s_0 , gives

 $\lambda_j(s) = \lambda_j(s_0) + \langle \nabla \lambda_j(s_0), \delta s \rangle + \cdots$, where $\delta s = s - s_0$

First order term $\langle \nabla \lambda_j(s_0), \delta s \rangle$ should be:

- 1. as large as possible for $\lambda_j, j \in I_{in}$
- 2. as small as possible for $\lambda_j, j \in I_{out}$

Two stages of the isolation process:

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band. Taylor expansions, for each *s* close to s_0 , gives

 $\lambda_j(s) = \lambda_j(s_0) + \langle \nabla \lambda_j(s_0), \delta s \rangle + \cdots$, where $\delta s = s - s_0$

First order term $\langle \nabla \lambda_j(s_0), \delta s \rangle$ should be:

- 1. as large as possible for $\lambda_j, j \in I_{in}$
- 2. as small as possible for $\lambda_j, j \in I_{out}$

Two stages of the isolation process:

1. Choice of direction: Determine unit vector $w_{max} \in W^{\perp}$ such that

$$\langle \nabla \lambda_j(s_0), \delta s \rangle, j \in I_{in}$$

are maximal, in some sence.

Denote by I_{in} and I_{out} the subsets of $\{1, ..., 2n\}$, set of indices of the eigenvalues inside and outside of the resonance band. Taylor expansions, for each *s* close to s_0 , gives

 $\lambda_j(s) = \lambda_j(s_0) + \langle \nabla \lambda_j(s_0), \delta s \rangle + \cdots$, where $\delta s = s - s_0$

First order term $\langle \nabla \lambda_j(s_0), \delta s \rangle$ should be:

- 1. as large as possible for $\lambda_j, j \in I_{in}$
- 2. as small as possible for $\lambda_j, j \in I_{out}$

Two stages of the isolation process:

1. Choice of direction: Determine unit vector $w_{max} \in W^{\perp}$ such that

$$\langle \nabla \lambda_j(s_0), \delta s \rangle, j \in \mathbf{I_{in}}$$

are maximal, in some sence.

2. Isolation: Given w_{max} from Stage 1., find smallest $\alpha^* \in \mathbb{R}$ such that eigenvalues correspond to $s = s_0 + \alpha^* w_{max}$ are outside the \mathcal{R} .

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{max} \in W^{\perp}$.

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{max} \in W^{\perp}$.

Compute:

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{max} \in W^{\perp}$.

Compute:

• Directional derivatives of all eigenvalues

Stage 1.

Find optimal direction $w_{max} \in W^{\perp}$.

Compute:

• Directional derivatives of all eigenvalues \longrightarrow

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{max} \in W^{\perp}$.

Compute:

 Directional derivatives of all eigenvalues → requires all eigenvectors of initial QEP. Sometimes we don't have to do it for all eigenvalues!

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{max} \in W^{\perp}$.

Compute:

 Directional derivatives of all eigenvalues — requires all eigenvectors of initial QEP. Sometimes we don't have to do it for all eigenvalues!

EXPLAIN later!

Stage 1.

Find optimal direction $w_{max} \in W^{\perp}$.

Compute:

 Directional derivatives of all eigenvalues → requires all eigenvectors of initial QEP. Sometimes we don't have to do it for all eigenvalues!

EXPLAIN later!

• Orthonormal basis of W^{\perp} (e.g. via QR factorization)

Stage 1.

Find optimal direction $w_{max} \in W^{\perp}$.

Compute:

 Directional derivatives of all eigenvalues → requires all eigenvectors of initial QEP. Sometimes we don't have to do it for all eigenvalues!

EXPLAIN later!

- Orthonormal basis of W^{\perp} (e.g. via QR factorization)
- w_{max} is singular vector that correspond to σ_{max} of scalar product matrix, that is $\Pi \in \mathbb{R}^{q \times q}$ with

$$\pi_{j,t} = \langle \nabla \lambda_j(s_0), w_t \rangle,$$

in the position (j, t), $j, t = 1, \ldots, q$.

The basic isolation algorithm - choice of direction

Stage 1.

Find optimal direction $w_{max} \in W^{\perp}$.

Compute:

 Directional derivatives of all eigenvalues → requires all eigenvectors of initial QEP. Sometimes we don't have to do it for all eigenvalues!

EXPLAIN later!

- Orthonormal basis of W^{\perp} (e.g. via QR factorization)
- w_{max} is singular vector that correspond to σ_{max} of scalar product matrix, that is $\Pi \in \mathbb{R}^{q \times q}$ with

$$\pi_{j,t} = \langle \nabla \lambda_j(s_0), w_t \rangle,$$

in the position $(j, t), j, t = 1, \ldots, q$.

OVERALL COST: $O(n^3)$

.

Stage 2.

Given optimal direction $w_{max} \in W^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that for $s = s_0 + \alpha^* w_{max}$ eigenvalue is outside the resonance band.

.

Stage 2.

Given optimal direction $w_{max} \in W^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that for $s = s_0 + \alpha^* w_{max}$ eigenvalue is outside the resonance band.

.

QEP is hyperbolic

Stage 2.

Given optimal direction $w_{max} \in W^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that for $s = s_0 + \alpha^* w_{max}$ eigenvalue is outside the resonance band.

QEP is hyperbolic \rightarrow

Stage 2.

Given optimal direction $w_{max} \in W^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that for $s = s_0 + \alpha^* w_{max}$ eigenvalue is outside the resonance band.

QEP is hyperbolic \rightarrow use bisection on α to find how many eigenvalues for

 $s_0 + \alpha w_{max}$

are inside the resonance band \mathcal{R} .

Stage 2.

Given optimal direction $w_{max} \in W^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that for $s = s_0 + \alpha^* w_{max}$ eigenvalue is outside the resonance band.

QEP is hyperbolic \rightarrow use bisection on α to find how many eigenvalues for

 $s_0 + \alpha w_{max}$

are inside the resonance band $\mathcal{R}.$ As soon as the number of eigenvalues in \mathcal{R} is zero - STOP.

Stage 2.

Given optimal direction $w_{max} \in W^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that for $s = s_0 + \alpha^* w_{max}$ eigenvalue is outside the resonance band.

QEP is hyperbolic \rightarrow use bisection on α to find how many eigenvalues for

 $s_0 + \alpha w_{max}$

are inside the resonance band $\mathcal{R}.$ As soon as the number of eigenvalues in \mathcal{R} is zero - STOP.

OVERALL COST: O(n) per bisection step

Stage 2.

Given optimal direction $w_{max} \in W^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that for $s = s_0 + \alpha^* w_{max}$ eigenvalue is outside the resonance band.

QEP is hyperbolic \rightarrow use bisection on α to find how many eigenvalues for

 $s_0 + \alpha w_{max}$

are inside the resonance band $\mathcal{R}.$ As soon as the number of eigenvalues in \mathcal{R} is zero - STOP.

OVERALL COST: O(n) per bisection step

Quadratic eigenvalue problem have to stay hyperbolic!

Stage 2.

Given optimal direction $w_{max} \in W^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that for $s = s_0 + \alpha^* w_{max}$ eigenvalue is outside the resonance band.

QEP is hyperbolic \rightarrow use bisection on α to find how many eigenvalues for

 $s_0 + \alpha w_{max}$

are inside the resonance band $\mathcal{R}.$ As soon as the number of eigenvalues in \mathcal{R} is zero - STOP.

OVERALL COST: O(n) per bisection step

Quadratic eigenvalue problem have to stay **hyperbolic**! That is α is between the quantities:

$$\tau^- = \sqrt{\lambda_{\max}(M)\lambda_{\max}(K)} - \sigma_{\min}(D) \quad \text{ and } \quad \tau^+ = \sigma_{\min}(D) - \sqrt{\lambda_{\max}(M)\lambda_{\max}(K)} \,.$$

Stage 2.

Given optimal direction $w_{max} \in W^{\perp}$, find smallest $\alpha^* \in \mathbb{R}$ such that for $s = s_0 + \alpha^* w_{max}$ eigenvalue is outside the resonance band.

QEP is hyperbolic \rightarrow use bisection on α to find how many eigenvalues for

 $s_0 + \alpha w_{max}$

are inside the resonance band $\mathcal{R}.$ As soon as the number of eigenvalues in \mathcal{R} is zero - STOP.

OVERALL COST: O(n) per bisection step

Quadratic eigenvalue problem have to stay hyperbolic!

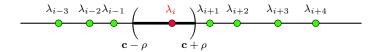
Algorithm works only if there are no eigenvalues in \mathcal{R} either for $\alpha = \tau^-$ or $\alpha = \tau^+ \longrightarrow$ provides starting interval for bisection.

 I_{out} - options

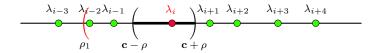
How we choose set I_{out} ?

How we choose set *I*_{out}?

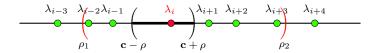
How we choose set I_{out} ?



How we choose set I_{out} ?



How we choose set I_{out} ?



How we choose set I_{out} ?

2. First, we compute

$$\tau_{in} = \max_{i \in I_{in}} \frac{\max\{|\lambda_i(s_0) - c + \rho|, |\lambda_i(s_0 - c - \rho)|\}}{\|\nabla \lambda_i s_0\|}.$$

How we choose set I_{out} ?

2. First, we compute

$$\tau_{in} = \max_{i \in I_{in}} \frac{\max\left\{ |\lambda_i(s_0) - c + \rho|, |\lambda_i(s_0 - c - \rho)| \right\}}{\|\nabla \lambda_i s_0\|}.$$

We say that eigenvalue $\lambda_j(s_0)$ is *dangerous* if

How we choose set I_{out} ?

2. First, we compute

$$\tau_{in} = \max_{i \in I_{in}} \frac{\max\{|\lambda_i(s_0) - c + \rho|, |\lambda_i(s_0 - c - \rho)|\}}{\|\nabla \lambda_i s_0\|}$$

We say that eigenvalue $\lambda_j(s_0)$ is *dangerous* if

$$\frac{\min\left\{\left|\lambda_{j}(s_{0})-c+\rho\right|,\left|\lambda_{j}(s_{0})-c-\rho\right|\right\}}{\|\nabla\lambda_{j}(s_{0})\|} \leq Tol \cdot \tau_{in},$$

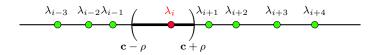
How we choose set I_{out} ?

2. First, we compute

$$\tau_{in} = \max_{i \in I_{in}} \frac{\max\left\{ |\lambda_i(s_0) - c + \rho|, |\lambda_i(s_0 - c - \rho)| \right\}}{\|\nabla \lambda_i s_0\|}$$

We say that eigenvalue $\lambda_j(s_0)$ is *dangerous* if

$$\frac{\min\left\{\left|\lambda_{j}(s_{0})-c+\rho\right|,\left|\lambda_{j}(s_{0})-c-\rho\right|\right\}}{\|\nabla\lambda_{j}(s_{0})\|} \leq Tol \cdot \tau_{in},$$



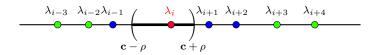
How we choose set I_{out} ?

2. First, we compute

$$\tau_{in} = \max_{i \in I_{in}} \frac{\max\left\{ |\lambda_i(s_0) - c + \rho|, |\lambda_i(s_0 - c - \rho)| \right\}}{\|\nabla \lambda_i s_0\|}$$

We say that eigenvalue $\lambda_j(s_0)$ is *dangerous* if

$$\frac{\min\left\{\left|\lambda_{j}(s_{0})-c+\rho\right|,\left|\lambda_{j}(s_{0})-c-\rho\right|\right\}}{\|\nabla\lambda_{j}(s_{0})\|} \leq Tol \cdot \tau_{in},$$



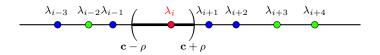
How we choose set I_{out} ?

2. First, we compute

$$\tau_{in} = \max_{i \in I_{in}} \frac{\max\left\{ |\lambda_i(s_0) - c + \rho|, |\lambda_i(s_0 - c - \rho)| \right\}}{\|\nabla \lambda_i s_0\|}$$

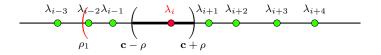
We say that eigenvalue $\lambda_j(s_0)$ is *dangerous* if

$$\frac{\min\left\{\left|\lambda_{j}(s_{0})-c+\rho\right|,\left|\lambda_{j}(s_{0})-c-\rho\right|\right\}}{\|\nabla\lambda_{j}(s_{0})\|} \leq Tol \cdot \tau_{in},$$

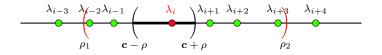


How we choose set I_{out} ?

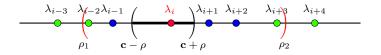
How we choose set I_{out} ?



How we choose set I_{out} ?



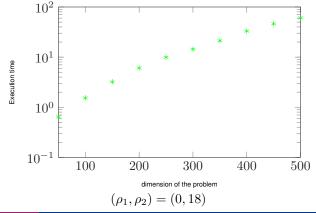
How we choose set I_{out} ?



M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-8, -7] and [0, 0.5], [1.6, 2.1] and [0, 0.1], respectively.

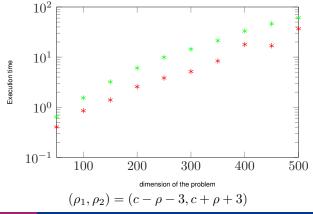
M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-8, -7] and [0, 0.5], [1.6, 2.1] and [0, 0.1], respectively.

For n = 50: 50: 500 measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\|D_s - D\|_{\infty}}{\|D_s\|_{\infty}}$



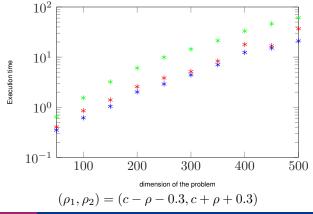
M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-8, -7] and [0, 0.5], [1.6, 2.1] and [0, 0.1], respectively.

For n = 50: 50: 500 measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\|D_s - D\|_{\infty}}{\|D_s\|_{\infty}}$



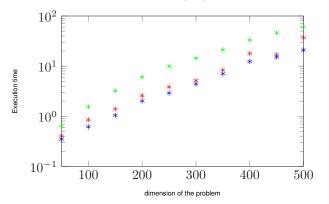
M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-8, -7] and [0, 0.5], [1.6, 2.1] and [0, 0.1], respectively.

For n = 50: 50: 500 measure time needed for isolation of one eigenvalue by basic algorithm and relative error in parameters ie. $\frac{\|D_s - D\|_{\infty}}{\|D_s\|_{\infty}}$



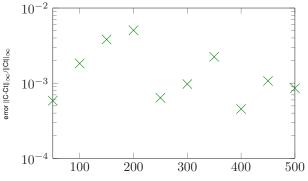
M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-8, -7] and [0, 0.5], [1.6, 2.1] and [0, 0.1], respectively.

For n = 50:50:500 measure time needed for isolation of **one eigenvalue** by basic algorithm and **relative error** in parameters ie. $\frac{||D_s - D||_{\infty}}{||D_s||_{\infty}}$



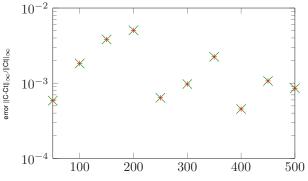
M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-8, -7] and [0, 0.5], [1.6, 2.1] and [0, 0.1], respectively.

For n = 50:50:500 measure time needed for isolation of **one eigenvalue** by basic algorithm and **relative error** in parameters ie. $\frac{\|D_s - D\|_{\infty}}{\|D_s\|_{\infty}}$



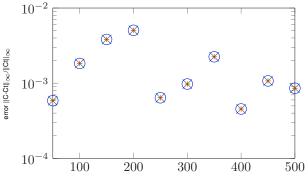
M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-8, -7] and [0, 0.5], [1.6, 2.1] and [0, 0.1], respectively.

For n = 50:50:500 measure time needed for isolation of **one eigenvalue** by basic algorithm and **relative error** in parameters ie. $\frac{\|D_s - D\|_{\infty}}{\|D_s\|_{\infty}}$



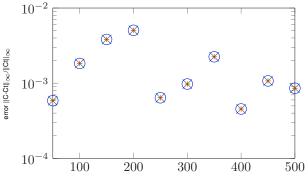
M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-8, -7] and [0, 0.5], [1.6, 2.1] and [0, 0.1], respectively.

For n = 50:50:500 measure time needed for isolation of **one eigenvalue** by basic algorithm and **relative error** in parameters ie. $\frac{\|D_s - D\|_{\infty}}{\|D_s\|_{\infty}}$



M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-8, -7] and [0, 0.5], [1.6, 2.1] and [0, 0.1], respectively.

For n = 50:50:500 measure time needed for isolation of **one eigenvalue** by basic algorithm and **relative error** in parameters ie. $\frac{\|D_s - D\|_{\infty}}{\|D_s\|_{\infty}}$



M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-8, -7] and [0, 0.5], [1.6, 2.1] and [0, 0.1], respectively.

For n = 50:50:500 measure time needed for isolation of **one eigenvalue** by basic algorithm and **relative error** in parameters ie. $\frac{\|D_s - D\|_{\infty}}{\|D_s\|_{\infty}}$

n	Iout	I^1_{out}	I_{out}^2	Time	$Time_1$	$Time_2$	Error
50	6	6	1	0.79	0.36	0.31	5.8582e - 04
100	14	14	13	1.98	0.84	0.55	1.8381e - 03
150	8	8	8	2.91	1.47	1.00	3.8210e - 03
200	17	17	14	5.64	2.50	1.96	5.0559e - 03
250	7	7	4	9.37	3.78	2.88	6.3999e - 04
300	5	5	5	13.51	4.96	4.37	9.7486e - 04
350	6	6	6	20.14	8.46	6.97	2.2452e - 03
400	7	7	7	31.72	16.54	11.25	4.4521e - 04
450	6	6	6	45.94	15.81	14.12	1.0724e - 03
500	17	17	17	58.93	26.64	19.56	8.5720e - 04

Table: Set I_{out} before and after selection of "dangerous" eigenvalues for intervals $(0, 18), (c - \rho - 3, c + \rho + 3)$ and $(c - \rho - 0.3, c + \rho + 0.3)$.

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D + \Delta D, K)$ sufficiently close to (M, D, K).

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D + \Delta D, K)$ sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_0 = \text{MathToArr}(D)$ and updating

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D + \Delta D, K)$ sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_0 = \text{MathToArr}(D)$ and updating

$$s_{i+1} = s_i + h_i w_{max}^{(i)},$$

with some appropriate, small step size h_i , where $w_{max}^{(i)}$ is the optimal direction at step *i*.

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D + \Delta D, K)$ sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_0 = \text{MathToArr}(D)$ and updating

$$s_{i+1} = s_i + h_i w_{max}^{(i)},$$

with some appropriate, small step size h_i , where $w_{max}^{(i)}$ is the optimal direction at step i.

There are several choices for h_i . So far:

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D + \Delta D, K)$ sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_0 = \text{MathToArr}(D)$ and updating

$$s_{i+1} = s_i + h_i w_{max}^{(i)},$$

with some appropriate, small step size h_i , where $w_{max}^{(i)}$ is the optimal direction at step *i*.

There are several choices for h_i . So far:

Greedy version: Try to isolate in each step, then advance as far as possible in the optimal direction and repeat.

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D + \Delta D, K)$ sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_0 = \text{MathToArr}(D)$ and updating

$$s_{i+1} = s_i + h_i w_{max}^{(i)},$$

with some appropriate, small step size h_i , where $w_{max}^{(i)}$ is the optimal direction at step i.

There are several choices for h_i . So far:

Greedy version: Try to isolate in each step, then advance as far as possible in the optimal direction and repeat.

At step *i* compute τ_i^+ , τ_i^- and optimal direction $w_{max}^{(i)}$.

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D + \Delta D, K)$ sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_0 = \text{MathToArr}(D)$ and updating

$$s_{i+1} = s_i + h_i w_{max}^{(i)},$$

with some appropriate, small step size h_i , where $w_{max}^{(i)}$ is the optimal direction at step i.

There are several choices for h_i . So far:

Greedy version: Try to isolate in each step, then advance as far as possible in the optimal direction and repeat.

At step *i* compute τ_i^+ , τ_i^- and optimal direction $w_{max}^{(i)}$.

• If possible, compute α_i^* isolating the spectrum, take $h_i = \alpha_i^*$ and stop.

Basic isolation algoritham is likely to give good solutions only if Taylor approximation sufficiently accurate, i.e., if $(M, D + \Delta D, K)$ sufficiently close to (M, D, K). Instead of trying to isolate in one single run, repeat basic isolation procedure over and over, setting $s_0 = \text{MathToArr}(D)$ and updating

$$s_{i+1} = s_i + h_i w_{max}^{(i)},$$

with some appropriate, small step size h_i , where $w_{max}^{(i)}$ is the optimal direction at step *i*.

There are several choices for h_i . So far:

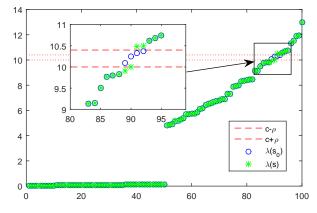
Greedy version: Try to isolate in each step, then advance as far as possible in the optimal direction and repeat.

At step *i* compute τ_i^+ , τ_i^- and optimal direction $w_{max}^{(i)}$.

- $\circ~$ If possible, compute α_i^* isolating the spectrum, take $h_i=\alpha_i^*$ and stop.
- If not, take h_i take $h_i = \tau_i^+$ or $h_i = \tau_i^-$ and continue.

Example-continuation algorithm

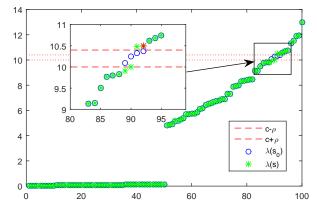
M, D, K tridiagonal s.t. QEP hyperbolic, n = 50Isolation of eigenvalues $\lambda_{89}(s_0) = 10.0952$, $\lambda_{90}(s_0) = 10.2558$, $\lambda_{91}(s_0) = 10.3211$, $\lambda_{92}(s_0) = 10.3778$ from the resonance band $(c - \rho, c + \rho) = (10, 10.4)$.



New eigenvalues: $\lambda_{89}(s) = 9.9016, \lambda_{90}(s) = 10.0000, \lambda_{91}(s) = 10.4863, \lambda_{92}(s) = 10.4905$

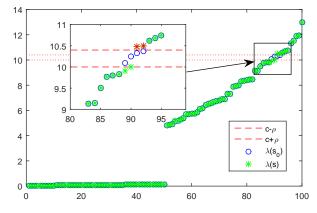
Suzana Miodragović

M, D, K tridiagonal s.t. QEP hyperbolic, n = 50Isolation of eigenvalues $\lambda_{89}(s_0) = 10.0952$, $\lambda_{90}(s_0) = 10.2558$, $\lambda_{91}(s_0) = 10.3211$, $\lambda_{92}(s_0) = 10.3778$ from the resonance band $(c - \rho, c + \rho) = (10, 10.4)$.



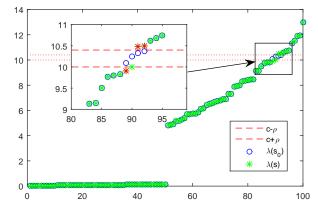
New eigenvalues: $\lambda_{89}(s) = 9.9016, \lambda_{90}(s) = 10.0000, \lambda_{91}(s) = 10.4863, \lambda_{92}(s) = 10.4905$

M, D, K tridiagonal s.t. QEP hyperbolic, n = 50Isolation of eigenvalues $\lambda_{89}(s_0) = 10.0952$, $\lambda_{90}(s_0) = 10.2558$, $\lambda_{91}(s_0) = 10.3211$, $\lambda_{92}(s_0) = 10.3778$ from the resonance band $(c - \rho, c + \rho) = (10, 10.4)$.



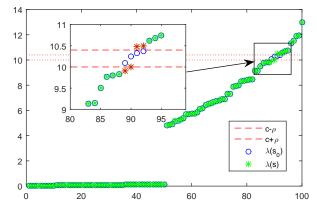
New eigenvalues: $\lambda_{89}(s) = 9.9016, \lambda_{90}(s) = 10.0000, \lambda_{91}(s) = 10.4863, \lambda_{92}(s) = 10.4905$

M, D, K tridiagonal s.t. QEP hyperbolic, n = 50Isolation of eigenvalues $\lambda_{89}(s_0) = 10.0952$, $\lambda_{90}(s_0) = 10.2558$, $\lambda_{91}(s_0) = 10.3211$, $\lambda_{92}(s_0) = 10.3778$ from the resonance band $(c - \rho, c + \rho) = (10, 10.4)$.



New eigenvalues: $\lambda_{89}(s) = 9.9016, \lambda_{90}(s) = 10.0000, \lambda_{91}(s) = 10.4863, \lambda_{92}(s) = 10.4905$

M, D, K tridiagonal s.t. QEP hyperbolic, n = 50Isolation of eigenvalues $\lambda_{89}(s_0) = 10.0952$, $\lambda_{90}(s_0) = 10.2558$, $\lambda_{91}(s_0) = 10.3211$, $\lambda_{92}(s_0) = 10.3778$ from the resonance band $(c - \rho, c + \rho) = (10, 10.4)$.



New eigenvalues: $\lambda_{89}(s) = 9.9016, \lambda_{90}(s) = 10.0000, \lambda_{91}(s) = 10.4863, \lambda_{92}(s) = 10.4905$

Gyroscopic QEP:

$$G(\lambda) = (\lambda^2 M + \lambda D + K)x = 0 \qquad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^n$$

-

Numerical example - Gyroscopic QEP

Gyroscopic QEP:

 $G(\lambda) = (\lambda^2 M + \lambda D + K)x = 0 \qquad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^n$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.

Gyroscopic QEP:

 $G(\lambda) = (\lambda^2 M + \lambda D + K)x = 0 \qquad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^n$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.

 $M,\,K$ and D are chosen such that the system is stable \rightarrow all eigenvalues are purely imaginary and semi-simple.

Gyroscopic QEP:

 $G(\lambda) = (\lambda^2 M + \lambda D + K)x = 0 \qquad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^n$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.

 $M,\,K$ and D are chosen such that the system is stable \rightarrow all eigenvalues are purely imaginary and semi-simple.

Gyroscopic QEP:

 $G(\lambda) = (\lambda^2 M + \lambda D + K)x = 0 \qquad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^n$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.

 $M,\,K$ and D are chosen such that the system is stable \to all eigenvalues are purely imaginary and semi-simple. Then the QEP

$$Q(\lambda) := -G(-i\lambda) = \lambda^2 M + \lambda(iD) - K$$

is Hermitian and hyperbolic.

Gyroscopic QEP:

 $G(\lambda) = (\lambda^2 M + \lambda D + K)x = 0 \qquad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^n$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.

 $M,\,K$ and D are chosen such that the system is stable \to all eigenvalues are purely imaginary and semi-simple. Then the QEP

$$Q(\lambda) := -G(-i\lambda) = \lambda^2 M + \lambda(iD) - K$$

is Hermitian and hyperbolic.

In this example: M and K are tridiagonal matrix with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-0.5, 0] and [0, 0.1], respectively.

Gyroscopic QEP:

 $G(\lambda) = (\lambda^2 M + \lambda D + K)x = 0 \qquad \lambda \in \mathbb{C} \quad 0 \neq x \in \mathbb{C}^n$

where M and K are tridiagonal Hermitian matrices, D is tridiagonal skew-Hermitian.

 $M,\,K$ and D are chosen such that the system is stable \to all eigenvalues are purely imaginary and semi-simple. Then the QEP

$$Q(\lambda) := -G(-i\lambda) = \lambda^2 M + \lambda(iD) - K$$

is Hermitian and hyperbolic.

In this example: M and K are tridiagonal matrix with diagonal and codiagonal elements uniformly distributed in [0.5, 1] and [0, 0.1], [-0.5, 0] and [0, 0.1], respectively.

The diagonal and codiagonal elements of the matrix D are uniformly distributed in $\left[-5i,-4i\right]$ and $\left[0i,0.5i\right]$, respectively.

* are einegvalues with indices in set I_{out} for different tolerance Tol_1

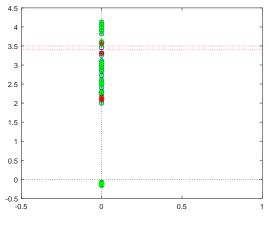
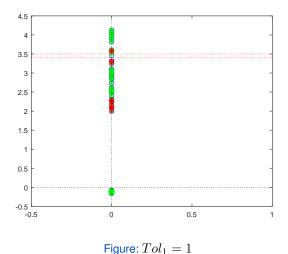


Figure: $Tol_1 = 0.5$

* are einegvalues with indices in set I_{out} for different tolerance Tol_1



* are einegvalues with indices in set I_{out} for different tolerance Tol_1

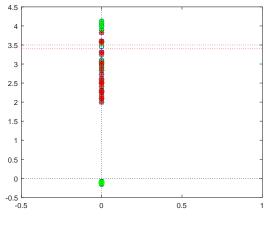


Figure: $Tol_1 = 2$

* are einegvalues with indices in set I_{out} for different tolerance Tol_1

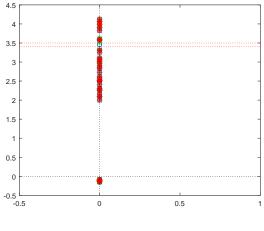


Figure: $Tol_1 = 4$

We have:

We have:

Algorithm for the frequency isolation problem proposed for hyperbolic QEPs.

We have:

Algorithm for the frequency isolation problem proposed for hyperbolic QEPs. Tested only for tridiagonal case, with simple eigenvalues.

We have:

Algorithm for the frequency isolation problem proposed for hyperbolic QEPs. Tested only for tridiagonal case, with simple eigenvalues.

✓ **Basic isolation algoritham**: cost $O(n^3)$, works for systems close to non-resonance

We have:

Algorithm for the frequency isolation problem proposed for hyperbolic QEPs. Tested only for tridiagonal case, with simple eigenvalues.

- ✓ Basic isolation algoritham: cost $O(n^3)$, works for systems close to non-resonance
- ✓ **Continuation algoritham**: cost $O(n^3)$ per step, works irrespective of spectral distribution or distnace to non-resonance.

We have:

Algorithm for the frequency isolation problem proposed for hyperbolic QEPs. Tested only for tridiagonal case, with simple eigenvalues.

- ✓ Basic isolation algoritham: cost $O(n^3)$, works for systems close to non-resonance
- ✓ **Continuation algoritham**: cost $O(n^3)$ per step, works irrespective of spectral distribution or distnace to non-resonance.

Thank you for attention!